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ABSTRACT
While product recommendation algorithms on the Web are well-
supported by a vast amount of interaction data, the same is not true
on Voice. A promising approach to mitigate the issue is transfer
learning, i.e., transferring the knowledge of customers’ shopping
behaviors learned from their shopping activities on the Web to
Voice. Such aWeb-to-Voice transfer is challenging due to customers’
distinct shopping behaviors on Voice: customers are inclined to
purchase more low-consideration products and are more likely to
purchase certain products repeatedly. This paper presents TransV,
a novel Web-to-Voice neural transfer network that allows for effec-
tive transfer of customers’ shopping patterns from theWeb to Voice,
while taking into account customers’ distinct purchase patterns on
Voice. Our method extends the state-of-the-art self-attention neural
architecture with a multi-level tri-factorization neural component,
which allows to explicitly capture the similarity and dissimilarity of
customers’ shopping patterns on the Web and Voice. To model re-
peated purchases, TransV adopts a recency-based copy mechanism
that considers the impact of the recency of historical purchases on
customers’ behavior of repeated purchases. Extensive validation on
multiple real-world datasets, including two cross-platform datasets
from Amazon.com and Amazon Alexa, shows that our method is
able to improve voice-based recommendation substantially by 26.8%
as compared with non-transfer learning methods.

CCS CONCEPTS
• Information systems→Recommender systems; •Comput-
ing methodologies → Transfer learning; Neural networks.

KEYWORDS
Voice-based recommendation; Web-to-Voice transfer; Repeated pur-
chase

ACM Reference Format:
Rongting Zhang and Jie Yang. 2020. Web-to-Voice Transfer for Product
Recommendation on Voice. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’20), July 25–30, 2020, Virtual Event, China. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3397271.3401164

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGIR ’20, July 25–30, 2020, Virtual Event, China
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8016-4/20/07.
https://doi.org/10.1145/3397271.3401164

1 INTRODUCTION
In the last few years, there has been an explosion of interest in voice-
based technology across industry, with an estimated 144.3 million
shipments of voice-enabled devices last year [43]. An important
use case for voice-enabled devices is voice shopping, which has
become an increasingly important shopping scenario. A recent
survey shows that up to 43% of voice-enabled device owners use
their device to shop and by 2022, voice is expected to be a $40 billion
channel for shopping [9].

A fundamental task in voice shopping is product recommenda-
tion, where the goal is to recommend relevant products to customers
by inferring their preferences. While a growing body of research
has addressed the voice-based recommendation problem from the
dialogue perspective, i.e., improving the effectiveness of question-
answering between the customer and system [7, 8, 11, 23, 25, 44, 45],
relatively little work has been focused on addressing the specific
challenges arising in recommendation on Voice [40].

Due to the unique characteristics of voice interfaces (e.g., narrow
information channel), customers tend to explore fewer products
and choose fewer long-tail products, as compared to Web-based
channels [45]. Consequently, products purchased through Voice
are much more limited in terms of both quantity and diversity.
Due to the fact that voice interfaces are new and not yet widely
adopted, customers on Voice do not have a long history as compared
with Web. These problems pose a bigger-than-ever data sparsity
challenge that impedes effective recommendation. To mitigate the
data sparsity issue, a promising approach is transfer learning: a
customer is likely to share similar shopping behaviors on the Web
and Voice in terms of favored product types and purchase patterns;
by transferring the shared shopping patterns from Web, the system
can readily generate recommendations for customers with limited
historical purchases on Voice, or even those new to Voice.

Despite its obvious potential, transfer learning from Web to
Voice is non-trivial due to customers’ distinct shopping behaviors
on Voice [19]. For example, customers are more inclined to pur-
chase low-consideration products (e.g., paper towel and toothpaste)
than high-consideration ones (e.g., computer monitors) on Voice.
This is in part due to the recency of Voice as a shopping medium
that customers are not used to making complex shopping decisions
by voice, in part due to the lack of technology for supporting ef-
fective interactions. On the other hand, the convenience of voice
interactions triggers a strong tendency of repeated purchases in
voice shopping: many products are purchased by the same cus-
tomers over and over, especially those consumables that need to
be purchased on a regular basis. We note that repeated purchase
behaviors have also been observed on the Web, which is mainly
driven by customers’ loyalty to certain brands [5, 10, 42].
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In the recommendation literature, transfer learning has been
implemented by extending recommendation models, e.g., factor-
ization models [28, 29, 33] or neural networks [14, 21, 26], with
shared user1 representations for cross-domain recommendation
tasks. While being different in the underlying recommendation
models (see Section 2 for a detailed discussion), both classes of
methods are designed for transferring user representations with
less emphasis on transferring the interaction patterns, which has to
be carefully considered in our Web-to-Voice transfer context. More
recent work [18] attempts to address the problem by modeling the
transfer of the purchase patterns from one domain to another using
a linear transformation. However, it fails to capture the relation-
ships of interaction patterns across domains, such as similarity and
dissimilarity, which are essential for Web to Voice transfer.

This paper introduces TransV, a novel neural network-based
recommendation method for transferring customers’ shopping be-
haviors from Web to Voice while considering the uniqueness of
voice shopping. TransV is designed to learn shared customer and
product representations across both channels and to carefully trans-
fer the purchase patterns from Web to Voice by modeling their
relationships explicitly. Specifically, our method is built on the
state-of-the-art self-attention neural architecture [41, 49] to learn
customer and product representations. To enable effective transfer
of customers’ purchase patterns from Web to Voice, TransV adopts
a multi-level tri-factorization approach that models web and voice
purchase patterns with both shared and separated neural parts. By
doing so, TransV distinguishes channel-specific purchase patterns
from channel-independent ones. To account for customers’ repeated
purchase behaviors that are prevalent in voice shopping, TransV
adopts a recency-biased copy mechanism, which leverages the copy
mechanism [16, 36] and extends it by considering the impact of the
recency of historical purchases on repeated purchases.

TransV generates recommendations from a mixture of general
and repeated purchase probability, thereby unifying Web-to-Voice
transfer learning with repeated purchase modeling in a holistic
neural model. It can be trained in an end-to-end manner that auto-
matically learns the importance of general and repeated purchases
for generating the most relevant product recommendations on
Voice. In summary, we make the following key contributions:

• We introduce the problem of Web-to-Voice transfer learning
for effective recommendation in voice shopping.

• We propose a multi-level tri-factorization approach that al-
lows for effective Web-to-Voice transfer while taking into
account customers’ behaviors on Voice.

• We present a unified neural transfer network that orches-
trates both transfer learning and repeated purchasemodeling
for voice-based recommendation.

To the best of our knowledge, this is the first work to study
transfer learning for voice-based recommendation. Extensive vali-
dation on multiple real-world datasets, including two cross-channel
datasets fromAmazon.com andAmazonAlexa (one of today’smajor
voice shopping channels), shows that our method is able to improve
the quality of voice-based recommendation by 26.8% as compared
with non-transfer learning methods measured by NDCG@1.

1We use “user” as a generic term and “customer” to specifically refer to the user in
shopping contexts; similar for “item” vs. “product”, and “interaction” vs. “purchase”.

2 RELATEDWORK
This section discusses relevant work from the emerging field of
voice-based recommendation, and then reviews existing methods
related to ours in transfer learning and repeated purchases.

2.1 Voice-based Recommendation
With the rapid increase of personal assistants, a considerable amount
of literature has grown up around conversational recommendation.
The focal point of research efforts has been enabling the system
to effectively and efficiently infer users’ intents and satisfy their
information needs [35, 47]. Due to the complexity of the problem,
it has been studied by several research communities including nat-
ural language processing [11, 23, 25], human-computer interaction
[7, 45], and information retrieval (including recommender systems)
[8, 44]. Existing work mainly takes a dialogue perspective with the
goal of improving the question-answering process, i.e., asking the
most relevant questions to collect user feedback.

From the recommendation perspective, most existing work as-
sumes a cold-start setting that ignores long-term preferences of
users. For example, Zhang et al. [47] studies the effect of in-session
aspect-based questions for product recommendation using memory
networks [39]. Li et al. [25] introduce a neural dialogue model that
classifies the sentiment of a user with respect to movies discussed
in the conversation session, and based on that, it generates movie rec-
ommendations with a pre-trained autoencoder recommender [37].
A recent paper by Sun et al. [40] shows that the integration of users’
past purchasing behaviors boosts the effectiveness of voice-based
recommendation. Their work, however, concentrates on methods
for integrating recommendation techniques into the dialogue sys-
tem. Our work takes a step back and aims at bridging the conven-
tional recommendation techniques with the recommendation task
on Voice, with a specific focus on Web-to-Voice transfer which is
of key importance for successful voice shopping in practice.

2.2 Transfer Learning for Recommendation
Transfer learning has been a popular approach for tackling the data
sparsity problem by transferring the knowledge (e.g., user prefer-
ences) in a source domain to the task in the target domain [6, 24].
In recommendation, transfer learning is generally implemented
through multi-task learning [48], i.e., joint model training for rec-
ommendation in source and target domains, with a specific focus on
transferring user and item representations, or interaction patterns
across the domains.

Early work focuses on adapting matrix factorization techniques
for transfer learning [28, 29, 33]. Liu et al. [28] introduce a model
based on collective matrix factorization [38], where user latent
factors are shared across different domains. The observed interac-
tions in the source domain help to train better latent factors, thus
transferring the knowledge to the target domain. Pan et al. [32, 33]
propose to model the interaction patterns in different domains as
independent parameter matrices. Factorization models, however,
only learn latent factors and parameter matrices in a linear fashion,
which are oversimplified in capturing the complex user-item inter-
action patterns. More importantly, these methods fail to capture
the relationship between user interactions in different domains.
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Neural network-basedmethods are more capable of learning non-
linear latent representations for users and items and potentially
also their interactions (see a recent survey [46]). Specific to neural
transfer learning for cross-domain recommendation, Elkahky et
al. [14] introduce a multi-view deep learning method that learns
shared user representations from user-item interactions in different
domains. Lian et al. [26] propose to incorporate content information
into the multi-view neural network. Kanagawa et al. [21] go further
in this direction and formulate cross-domain recommendation as
extreme multi-class classification, where only content features are
used for adapting a classifier trained in the source domain to the
target domain. These methods focus on learning better represen-
tations for users and items, while emphasizing less learning their
interaction patterns, which is important for voice shopping.

A recent paper [18], perhaps the most closely related work to
ours, models the transfer of interactions across multiple domains
as a linear transformation using cross-stitch networks [30]. In the
context of Web-to-Voice transfer, since the same products appear in
both Web and Voice, we adopt a tri-factorization approach [12, 31]
that fixes the product representations across channels, and extend
the approach into a multi-level scheme, which allows to capture
channel-independent and channel-specific interaction patterns.

2.3 Repeated Purchase
Due to the importance for business profitability, repeated purchases
are an important customer behavior studied in marketing as a sig-
nal of brand loyalty [20, 34]. In Web-based information systems,
repeated item consumption has been shown to be most affected
by the recency and quality of the item, with recency being more
critical [1]. Benson et al. [4] study such a behavior in more detail
and reveals the increasing inter-arrival gaps of repeated item con-
sumption that eventually lead to abandonment. In online shopping,
Bhagat et al. [5] study repeated purchases for consumable products,
e.g., toothpaste and diapers, and propose a prediction model that
helps increase the product click-through rate. Our work extends
the study to voice shopping and the model to collaborative filtering
that recommends both repeated and novel products.

Repeated purchases have only been considered in recommender
system literature recently. Wan et al. [42] introduce a recommenda-
tion algorithm, adaLoyal, a personalized grocery recommender. In
adaLoyal, the repeated purchase is leveraged in a post-processing
procedure to adapt the prediction of purchase probability over
an item using the customer’ historical purchases of the item. The
adaptation is implemented through a posterior calculation that ac-
counts for both probabilities of general and repeated purchases.
Ren et al. [36] propose a unified neural network model that jointly
learns repeated and novel consumption for session-based recom-
mendation. Our method is different in that we consider the general
sequential recommendation scenario and further model the impact
of recency of historical purchases for voice-based recommendation.

3 THE TRANSV MODEL
This section introduces our proposed method TransV for transfer-
ring customers’ shopping patterns from Web to Voice. The overall
structure of TransV is illustrated in Figure 1(a). It is composed of the
following modules: 1) Sequence Encoder, which learns high-quality

customer and product representations shared across channels given
historical customer-product interaction records from both chan-
nels; 2) Multi-level Interaction Module, which models the purchase
patterns on the Web and Voice as well as their relationships using a
multi-level tri-factorization approach; 3) Repeated Purchase Mod-
ule, which captures customers’ repeated purchase behaviors on
both channels; and 4) Mixture Output Module, which generates the
output from a mixture of general and repeated purchase probability.

In the following, we start by formalizing the problem before
introducing each of the modules in a separate subsection.
Problem Statement.We model voice-based recommendation as a
sequential recommendation problem, i.e., given a sequence of prod-
ucts a customer has previously purchased on theWeb and Voice, we
predict the next purchases. Formally, letU andV be the set of cus-
tomers and products, respectively; let Su = [vu,1,vu,2, . . . ,vu,nu ]
andTu = [tu,1, tu,2, . . . , tu,nu ] denote the sequence of products cus-
tomer u ∈ U purchased on both channels and the corresponding
timestamps of the purchases. Note that a timestamp is represented
as the difference with respect to a reference time point in terms
of the number of weeks; this allows us to map the timestamps to
embeddings, so as to model the temporal effect of past purchases.

Suppose tk is the time of prediction (tu,nu ≤ tk ), our sequential
recommendation problem with Web-to-Voice transfer is formu-
lated as predicting the purchase probability of any product on both
channels at tk+1:

P(vdtk+1 = v |Su ,Tu ), v ∈ V,d ∈ D, (1)

where D is the set of channels (i.e., Web and Voice in our case).

3.1 Sequence Encoder
The sequence encoder takes as input the sequence of products
historically purchased by a customer and generates customer repre-
sentations. It starts by encoding the products and the corresponding
timestamps of purchases, then encodes the sequence of embeddings
with transformer layers that take into account the dependencies
between the purchases, and finally generates customer representa-
tions through a self-attention pooling layer.
Embedding Products and Timestamps. Item encoding is imple-
mented as a single embedding lookup layer. In our case, we also
consider the category taxonomy of products available to obtain
higher quality embeddings. Specifically, we define the embedding
of a product vj ∈ V as the sum of embeddings of its affiliated
categories at different levels of the taxonomy:

vj =
L∑
l=1

v(l )j , (2)

where v(l )j ∈ Rm is the embedding of vj ’s category at the l-th level.
To capture the temporal dynamics of Su , we embed the times-

tamp of a purchase tu,i ∈ Tu :

tu,i = τ (tk − tu,i ), (3)

where τ represents a embedding lookup layer such that tu,i ∈ Rm .
The final representation of a product purchase is given as the sum
of the item embedding and time embedding:

eu,i = vu,i + tu,i . (4)
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(a) Architecture of TransV (b) Multi-level Interaction layers

Figure 1: The architecture of TransV (a) and the zoomed-in details of the multi-level interaction layers (b). TransV employs the
Sequence Encoder to learn shared product and customer representations across channels from the customer’s historical pur-
chases. These representations are on the one hand, fed to the Multi-level Interaction Module to learn the purchase probability
of the customer for the product on both Web and Voice, and on the other hand, fed to the Repeated Purchase Module to learn
the repeated purchase probability on the two channels. The output from both modules are combined by the Mixture Output
Module to generate the final purchase probability. To transfer the customer’s purchase patterns, the Multi-level Interaction
Module distinguishes channel-independent purchase patterns, i.e., upvTj , from channel-specific ones, i.e., ũpWd,p ṽTj .

Transformer Layers. To learn high-quality customer represen-
tations, we leverage the transformer layers [41] that capture the
dependency between the purchases based on semantic affinity in the
embedding space. To do so, we adopt the multi-head self-attention
mechanism [27, 41], which allows jointly attending to informa-
tion from different parts of the purchase sequence. Formally, let
E = [eu,1, eu,2, . . . , eu,nu ]

T ∈ Rnu×m be the output from the em-
bedding layer, we construct new representations using h attention
heads, each learning a specific dependency relationship within the
sequence as follows:

MH(E) = [head1,head2, . . . ,headh ]W
O , (5)

headi = Attention(EWQ
i ,EW

K
i ,EW

V
i ,m/h), (6)

whereWQ
i ,W

K
i ,W

V
i ∈ Rm×m/h are projection matrices for each

attention head and WO ∈ Rm×m is the output projection matrix
for the heads combined. The attention function is given by:

Attention(Q,K,V,m) = Softmax(
QKT
√
m

)V. (7)

In addition, we apply a position-wise feed-forward layer to the
output of the multi-head self-attention layers. The output of the
feed-forward layer is calculated as

A = LayerNorm(E + Dropout(MH(E))), (8)

S = Dropout(σ F (AWF
1 + b

F
1 ))W

F
2 + b

F
2 , (9)

F = LayerNorm(A + Dropout(S)), (10)

where WF
1 and WF

2 are parameter matrices and bF1 and bF2 are bias
terms; σ F (x) � Softrelu(x) = log(1 + ex ) is applied element-wise.
Here we adopt residual connection [17] and layer normalization [2].

Self-Attention Pooling LayerWe then construct three types of
customer representations, up , uq , uπ , to model the general cus-
tomer preference, repeated purchase preference and their relative
importance for recommendation, respectively. To do so, we apply
an attention-based pooling layer [27]:

u �[up , uq , uπ ]T (11)

=FTDropout(Softmax(Dropout(σP (FWP
1 ))W

P
2 )),

where σP � Softrelu,WP
1 ∈ Rm×m andWP

2 ∈ Rm×3 are parameter
matrices.

3.2 Multi-Level Interaction Module
Now we consider the problem of modeling customer-product in-
teractions induced from customers’ general preference (i.e., non-
repeated purchase) on different channels.

A standard approach to model interactions on different domains
when entities are shared is matrix tri-factorization [31], which
models the interaction scoring function on a specific domain d as:

b
d,p
u, j = upWd,pvTj , (12)

whereWd,p is a channel-specific parametermatrix capturing customer-
product interaction patterns. Such a formulation, however, cannot
capture the similarity between interaction patterns across channels.

We introduce the multi-level interaction layers which model
customer-product interaction as the sum of two factors, the channel-
independent affinity of the product to the customer’s taste and the
channel-specific one. Formally, we calculate the interaction score
by:

b
d,p
i, j = upvTj + ũ

pWd,p ṽTj , (13)
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where ũp , ṽj are low-dimensional vectors derived from up , vj through
fully connected layers with Softrelu activation. The first term upvTj
captures customers’ purchase patterns across channels, while the
second term ũpWd,p ṽTj captures channel-specific patterns. The de-
tails of our multi-level interaction layers are depicted in Figure 1(b).

We then obtain the interaction probability over all the products
using softmax:

p̂du = Softmax([bd,pu,1 , . . . ,b
d,p
u, |V |

]), (14)

where p̂du, j models the probability that the customer u would pur-
chase a specific product j among all the products on channel d .

3.3 Repeated Purchase Module
We now introduce our method for modeling the specific interac-
tion pattern of repeated purchases of the same product. The key
idea is to learn a probability of repeating a historical purchase for
each customer. To do so, we adopt the copy mechanism [16], which
models repeated purchases as copying purchases from the past. In
the specific context of product recommendation, the probability
is dependent not only on the customer’s repeated purchase pref-
erences, but also on the recency of the historical purchases. We
therefore extend the copy mechanism by considering the impact of
the recency of historical purchases on repeated purchases.

Since the repeated purchase behavior can vary across different
channels, we model the repeated purchase score of product vu,i ∈
Su for customer u ∈ U by:

b
d,q
u,(u,i) = uqvTu,i + ũ

qWd,q ṽTu,i , (15)

where vu,i is the vector representation of vu,i and ũq , ṽu,i are low-
dimensional vectors derived from uq , vu,i through fully connected
layers with Softrelu activation, respectively. Note that here we
consider each purchase in the sequence, i.e., vu,i ∈ Su , rather than
each product, as a candidate for repetition. The repeated purchase
probability for the same product will be summed up.

In practice, customers tend to repeatedly purchase products that
are recently purchased. We therefore, consider the impact of a
historical purchase on current purchase decision as affected by
purchase recency. Given the timestamp of the i-th purchase tu,i
and the time of prediction tk , we define a bias term for modeling
time recency as:

дu,i = T (tk − tu,i ), (16)
where T (·) is a learnable scalar function which can be represented
by a single-dimensional embedding lookup layer. With such a bias
term, the distribution of repeated purchase probability over histori-
cal purchases is given by:

qdu,(u,i) =
exp(bd,qu,(u,i) + дu,i )∑nu
l=1 exp(b

d,q
u,(u,l ) + дu,l )

. (17)

Consequently repeated purchase probability of product vj ∈ V is

qdu, j =

nu∑
i=1

1{vj=v(u,i ) }q
d
u,(u,i), (18)

where 1{·} is the indicator function returning 1 if the statement is
True and 0 otherwise. We note that in a degenerate case where the
repeated purchase score and time recency bias for all purchased

products are equal, the resulting distribution of repeated purchase
probability is equivalent to the empirical purchase frequency.

3.4 Mixture Output and Loss Function
The overall probability of a customer purchasing a product is mod-
eled as a mixture of the general purchase probability and the re-
peated purchase probability, i.e., p̂d and qd :

pdu = πdu q
d
u + (1 − πdu )p̂

d
u . (19)

where πdu is the mixture weight that describes the importance of
repeated purchase in customers’ shopping decision.

The mixture weight is considered to be dependent on specific
customers and the recency of their last purchases. Formally, consid-
ering the timestamp of the last purchase tu,nu , we define the time
recency bias as:

hu = S(tk − tu,nu ), (20)

where S(·) is a learnable scalar function. The mixture weight πdu is
given by:

πdu =
exp(wd,π uπ + bd,π + hu )

1 + exp(wd,π uπ + bd,π + hu )
, (21)

where wd,π ∈ Rm and bd,π ∈ R are parameters to be learned.
Loss Function. Our model generates recommendations on both
Web and Voice. To consider the importance of recommendation
relevance on both channels for model training, we introduce a
hyperparameter αd as the weight for loss on channel d ∈ D. Specif-
ically, let cdu, j be the normalized empirical frequency of observed
purchases on channel d for customer u ∈ U and product vj ∈ V ,
the training loss is given by:

L =

|D |∑
d=1

αd
∑
u ∈U

|V |∑
j=1

cdu, j log(p
d
u, j ). (22)

4 EXPERIMENTS AND RESULTS
In this section, we perform experiments to evaluate the performance
of TransV.We aim to answer the following questions:

• Q1: How much benefit does modeling repeated purchases
bring to recommendation performance?

• Q2: Howwell does our proposedWeb-to-Voice transfer learn-
ing perform for recommendation on Voice?

• Q3: How effective is TransV in uncovering the impact of
historical purchase recency on reorder and weighting the
importance of repeated purchases in voice shopping?

In addition, we investigate the impact of data sparsity on the effec-
tiveness of our method. In the following, we start by introducing our
experimental setup, before answering each of the above questions
in a separate subsection.

4.1 Experimental Setup
Datasets. We evaluate our proposed model on four real-world
shopping datasets. Among them, two datasets are publicly available
and each contains customers’ purchase records on a single channel.
These datasets allow us to evaluate the effectiveness of TransV in
modeling repeated purchases.

Session 7B: Text Classification and Transfer Learning  SIGIR ’20, July 25–30, 2020, Virtual Event, China

1225



Table 1: Basic statistics of public datasets. Statistics marked by NA are not applicable.

Datasets #item #user #purchase #pur./#user #department #category #subcategroy Nw #train sample #test sample repeat rate

Dunnhumby 20,248 2,493 1,777,413 712.96 27 292 1,680 30 25,374 8,443 0.3718
Instacart 22,889 34,486 8,556,249 248.11 21 134 NA 28 174,784 63,209 0.6280

Table 2: Basic statistics of Amazon datasets. ∆ repeat rate is
defined as the relative increment of repeated purchase rate
on Voice with respect to that on Web.

Datasets #item #purchase #depart. #categ. Nw ∆ repeat rateper user

Grocery 49,419 25.01 293 1,959 41 0.2829
Home 52,092 7.24 129 1,216 27 0.1568

• Dunnhumby: This is a grocery shopping dataset released by
Dunnhumby.2 It contains shopping history of 2,500 households
for around two years.

• Instacart: This is another grocery shopping dataset released by
Intacart.3 It contains shopping history of more than 200 thousand
users. This dataset only records the gap between two consecutive
transactions with a cutoff at 30 days where gaps greater than
30 days are logged as 30 days. Thus, we only keep users whose
maximum gap between two consecutive orders is less than 30
days so all her shopping timestamps can be reconstructed.
To evaluate our model in transfer learning, we construct two

cross-channel datasets from Amazon.com4 and Amazon Alexa5
that contain customers’ purchase records on both Web and Voice.6

• AmazonGrocery:This is a proprietary grocery shopping dataset
collected from Amazon. It contains a sample of customers’ gro-
cery shopping histories on both Web and Voice.

• Amazon Home: This is a proprietary home products shopping
dataset collected from Amazon (e.g., water filter, coffee maker).
It contains a sample of customers’ shopping histories of home
products on both Web and Voice.
For every user, we create sliding windows of Nw + 2 weeks

with a step size of 2 weeks from her historical shopping record.
TransV consumes purchases from the first Nw weeks and generates
recommendations for the last 2 weeks. Each sliding window of a
user is considered as a sample. We split the samples into a training
and a test set based on the timestamps of the purchases such that
the purchases in the last 2 weeks of the test samples do not appear
in the training samples. Afterward, we filter the dataset by only
keeping items purchased bymore than 10 unique customers. For the
Amazon datasets, we only keep samples with at least one purchase
on Voice in the test set. Key statistics from public and proprietary
datasets are presented in Table 1 and 2 respectively.
Comparison Methods. To demonstrate the effectiveness of our
method in modeling repeated purchases, we compare with the

2https://www.dunnhumby.com/careers/engineering/sourcefiles
3https://www.instacart.com/datasets/grocery-shopping-2017
4https://www.amazon.com
5https://developer.amazon.com/alexa
6To protect customers, all data from Amazon.com and Alexa were anonymized and
un-identified before the experiment and analysis were performed.

following state-of-the-art methods: 1) Bi-LSTM [15]: a deep learn-
ing model based on bi-directional LSTM, 2) Transformer [22, 41]:
a recommendation model based on Transformer that adopts the
self-attention mechanism, 3) adaLoyal Transformer: a variant
of Transformer where we apply adaLoyal [42] on top of Trans-
former for modeling repeated purchases, 4) RepeatNet [36]: an
RNNbasedmethod thatmodels repeated purchases using an explore-
repeatmode switchwhich integrates a copymechanism that chooses
item from historical purchases. For fair comparison, we use the
same attention based pooling layer and the inner product interac-
tion layer for all the above comparison methods and our model.
To ablate the effect of transfer learning, the compared methods
are all trained on combined samples from Web and Voice – as re-
peated purchases are a cross-platform behavior – without learning
channel-specific interactions. As an additional baseline, we also
compare with user-itemPop which only relies on the customer-
wise empirical frequency of products for recommendation.

To investigate the effectiveness of our multi-level interaction
module for transfer learning, we compare the following variants
of TransV: 1) Non Transfer: the variant that only utilizes voice
data for recommendation, 2)Direct Transfer: the variant that does
not learn channel-specific interactions, i.e., the same configuration
used in comparing methods for modeling repeated purchases, 3)
Tri-Factor: the variant where tri-factorization is used to model
interactions across Web and Voice, 4) TransV: the variant where
our proposed multi-level interaction module is used for the transfer.

Evaluation Protocols.We measure the performance of the com-
pared methods using two metrics 1) Normalized Discounted Cumu-
lative Gain (NDCG) at K = {1, 5, 10} and 2) Area Under the ROC
Curve (AUC). AUC captures the overall ranking performance by
comparing customer purchased products with non-purchased ones
in a pairwise manner, regardless of the position of the compared
pair in the generated ranking list. Unlike AUC, NDCG@K weights
the top-ranking positions as more important than the others. Such
a difference makes NDCG@K (especially when K = 1) a more
suitable metric for voice-based recommendation, where the top
recommendations need to be highly precise due to the narrow in-
formation channel. We note that results reported in this section for
the two cross-channel datasets are all obtained from Voice.

Parameter Settings.We empirically set optimal parameters based
on a head-out validation set that contains 10% of the test data. For
all methods, the dimension of the embedding is set to 64. For the
learning rate and regularization weight, we apply a grid search in
{10−4, 10−3, 10−2, 10−1} . The dropout rate is selected from the set
{0.0, 0.1, 0.2, 0.3}. To find the optimal default loyalty l0 for adaLoyal,
we apply grid search in {0.1, 0.2, ..., 0.9}. For Transformer models,
we set the number of attention heads to 8. To keep the most re-
cent purchases, we set the maximum sequence length of historical
purchases as follows: N = 300 for Dunnhumby, N = 200 for In-
stacart and N = 60 for Amazon Grocery and Home. All the models
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Table 3: Repeated purchase recommendation performance of all comparison methods on the two public datasets. The best
performance is boldfaced.

Dataset Metric user-itemPop Bi-LSTM Transformer adaLoyal RepeatNet TransVTransformer

Dunnhumby

NDCG@1 0.4843 0.3896 0.4252 0.4777 0.4892 0.4972
NDCG@5 0.3871 0.3018 0.3245 0.3838 0.3991 0.4060
NDCG@10 0.3357 0.2579 0.2745 0.3341 0.3468 0.3523
AUC 0.6823 0.8328 0.8321 0.8481 0.8313 0.8313

Instacart

NDCG@1 0.6712 0.5549 0.5892 0.6666 0.6795 0.6951
NDCG@5 0.5825 0.4415 0.4728 0.5826 0.5906 0.6066
NDCG@10 0.5372 0.3919 0.4167 0.5383 0.5465 0.5616
AUC 0.8137 0.9584 0.9593 0.9659 0.9542 0.9575

Table 4: Repeated purchase recommendation performance of all comparisonmethods on the two cross-channel datasets tested
with voice purchases. Results of TransV are obtained with direct transfer. The numbers are relative ratio of the performance
with respect to that of user-itemPop. The best performance is boldfaced.

Dataset Metric user-itemPop Bi-LSTM Transformer adaLoyal RepeatNet TransV
Transformer (direct transfer)

Grocery

NDCG@1 1.0000 1.0051 1.0115 1.0186 1.0572 1.0823
NDCG@5 1.0000 0.8969 0.9101 1.0085 1.0525 1.0674
NDCG@10 1.0000 0.8751 0.8878 1.0075 1.0487 1.0610
AUC 1.0000 1.0701 1.0704 1.0794 1.0795 1.0801

Home

NDCG@1 1.0000 1.1129 1.1097 1.3270 1.4346 1.4715
NDCG@5 1.0000 0.8791 0.8675 1.1086 1.2180 1.2252
NDCG@10 1.0000 0.8683 0.8642 1.1003 1.2020 1.2061
AUC 1.0000 1.4614 1.4672 1.4701 1.4818 1.4838

are implemented with MXNet7. Model training is performed using
Adagrad [13] with mini-batches of size 128. All the gradients are
clipped between −10 and 10 to prevent exploding [3].

4.2 Results on Repeated Purchase (Q1)
We start by investigating the effectiveness of our proposed repeated
purchase module by comparing it against user-itemPop, Bi-LSTM,
Transformer, adaLoyal Transformer and RepeatNet. Results on pub-
lic and proprietary datasets are reported in Table 3 and 4, respec-
tively. In Table 4, the performance is shown in terms of relative
ratio with respect to that of user-itemPop tested on voice purchases.

We observe that Bi-LSTM and Transformer achieve better per-
formance than user-itemPop when measured by AUC however
are outperformed by user-itemPop when measured by NDCG@K .
Recall that Bi-LSTM and Transformer are general collaborative fil-
tering approaches that do not explicitly model customers’ repeated
purchase behaviors. The result indicates that while these methods
are generally effective in recommendation, they are not suitable
for precise recommendation where the top-ranked products need
to be highly relevant. Unlike Bi-LSTM and Transformer, methods
that consider repeated purchases such as RepeatNet and TransV,
achieve higher performance than user-itemPop. Such a comparison
clearly demonstrate the need to account for repeated purchases in
recommendation.

7https://mxnet.apache.org/

Among these methods, we observe that RepeatNet and TransV
outperform adaLoyal Transformer on Amazon Grocery and Ama-
zon Home across both types of metrics; and on Dunnhumby and In-
stacart, they outperform adaLoyal Transformer when performance
is measured by NDCG@K . Recall that adaLoyal Transformer takes
a post-processing approach for modeling repeated purchases: it
re-ranks the result from the general collaborative filtering method
Transformer by considering customers’ historical product pur-
chases; RepeatNet and TransV, on the other hand, consider repeated
purchases as an integral part in modeling customers’ purchase be-
haviors. The comparison results demonstrate the benefit of the
latter approach for precise recommendation. This can be explained
by its capability of accurately capturing the effect of repeated pur-
chases in customers’ purchase behaviors, which helps generate
recommendations that are more relevant.

Our proposedmethod TransV achieves the best NDCG@K across
all the datasets and highest AUC on the two cross-channel datasets.
In particular, TransV consistently outperforms RepeatNet on both
datasets across both metrics. This is mainly due to the effectiveness
of considering time bias in modeling repeated purchases, which
we discuss further in section 4.4. Overall, TransV outperforms Re-
peatNet by 1.97% for the Web datasets (averaged over NDCG@K
for K = {1, 5, 10}; p-value < .001, WilCoxon signed-rank test) and
by 2.47% for voice-based recommendation on the cross-channel
datasets in terms of NDCG@1 (p-value < .001 on Grocery and
< .01 on Home, WilCoxon signed-rank test).
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Table 5: Transfer learning performance on the two propri-
etary datasets. The numbers are relative ratio of the perfor-
mance with respect to that of user-itemPop. The best perfor-
mance is boldfaced.

Dataset Metric No Direct Tri-factor TransVTransfer Transfer

Grocery

NDCG@1 0.9966 1.0823 1.0902 1.1041
NDCG@5 0.8969 1.0674 1.0806 1.0848
NDCG@10 0.8665 1.0610 1.0725 1.0764
AUC 1.0368 1.0801 1.0829 1.0823

Home

NDCG@1 1.0707 1.4715 1.4989 1.5295
NDCG@5 0.8595 1.2252 1.2889 1.3063
NDCG@10 0.8649 1.2061 1.2840 1.2976
AUC 1.3738 1.4838 1.4938 1.4949

4.3 Results on Transfer Learning (Q2)
We evaluate our proposed transfer learning module. To understand
the impact of the relative sparsity of Web data with respect to that
of voice data on the effectiveness of transfer learning, we first divide
customers into groups of different historical numbers of purchases
on Web; then for each of the group, we further divide customers
into groups according to their number of purchases on Voice.

The overall results on the two cross-channel datasets, i.e., Ama-
zon Grocery and Home, are reported in Table 5. We observe that
Direct Transfer is outperformed by Tri-factor, which is further out-
performed by our proposed approach TransV. The result signifies
the importance of transferring the interaction patterns between
customers and products for voice-based recommendation. More im-
portantly, the superior performance obtained by TransV compared
with Tri-factor signifies the advantage of multi-level interaction in
Web-to-Voice transfer for taking into account the distinct purchase
patterns of customers on Voice.

Compared with non-transfer learning (Table 5), TransV substan-
tially improves voice-based recommendation by 26.81%, 36.47%, and
37.13% for NDCG@K for K = {1, 5, 10}, respectively.

Impact of Data Sparsity. Results on customer groups with dif-
ferent numbers of purchases on Web and on Voice are depicted in
Figure 2. We first note that applying user-itemPop on Voice (user-
itemPop voice in the figure) results in different performance for
voice-based recommendation than regular user-item Pop which is
applied on purchases from both channels; moreover, it generally
has better performance. This confirms that customers’ shopping
behavior on Voice is different from that on Web and in particular,
they tend to have more repeated purchases on Voice. Comparing the
transfer learning performance on customers with different numbers
of historical purchases on Voice (subgroups in Figure 2(a-d)), we
observe that transfer learning is most beneficial for the customers
with the least number of historical purchases on Voice. Finally,
we observe that for customers with a similar number of voice pur-
chases, transfer learning is more beneficial for customers with more
purchases on the Web (Figure 2(a) vs. (b), and (c) vs. (d)). These
results demonstrate that Web data indeed can largely alleviate the
data sparsity issue in voice-based recommendation.
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Figure 2: Transfer learning performance on customer
groups with different number of historical voice purchases.
The performance ismeasured by relative ratio of NDCG@10
with respect to that of user-itemPop. Note that the method
“user-itemPop voice” does not apply to customers without
voice purchase history.
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Figure 3: Recommendation performance with different
voice weights.

Impact of Voice Weight. In transfer learning, TransV weights
the importance of the recommendation tasks for different channels
with the hyperparamter αd in its loss function. To investigate the
impact of the weight, we conduct an experiment with different
weight values on Amazon Grocery and Home datasets. We fixed
the task weight for Web as 1 and apply a grid search in {1, 2, 5, 10}
for the weight for recomendation on Voice. Figure 3 shows the per-
formance measured by NDCG@K . We observe that as the weight
for voice increases, the performance first increases then decreases.
The best performance is achieved when weight for Voice is 5 for
Amazon Grocery and 2 for Amazon Home. This result suggests that
with an appropriate setting for the weight of recommendation on
Voice, our approach can effectively transfer customers’ purchase
patterns from Web-to-Voice while taking into account the unique
characteristics of voice shopping. Besides, the similarity in perfor-
mance variation across αd values on the two datasets shows the
robustness of TransV.
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Figure 4: Predicted mixture weight against empirical re-
peated purchase rate. Note that we only include samples
with no less than two purchases to reduce noise.

4.4 Properties of TransV (Q3)
To further show how TransV works, we conduct an in-depth analy-
sis of the properties of TransV. We show how TransV can strike a
balance between modeling general and repeated purchases for effec-
tive recommendation and can uncover a time decay phenomenon
of the effect of historical purchases on repeated purchases.

Learning Mixture Weight. TransV learns the mixture weight π
to capture the importance of repeated purchases in customers’ shop-
ping decisions. Being able to learn such mixture weight is important
for generating recommendations of high-relevance. For comparison,
Figure 4 shows the learned mixture weights against the empirical
repeated purchase rate for Amazon Grocery and Instacart on the
test dataset. We observe that the learned mixture weight correlates
positively with the empirical repeated purchase rate. This demon-
strates the effectiveness of TransV in striking a balance between
modeling general and repeated purchases for recommendation. In
particular, we observe that for Amazon Grocery the predicted mix-
ture weight on Voice is higher than that onWeb, which corresponds
well with the statistics of the dataset (Table 2). As a remark, we
note though that the predicted mixture weight does not reflect the
exact empirical repeated purchase rate. This is likely due to the fact
that general preference also contributes to repeated purchases and
the current model cannot capture all the discriminant factors. We
leave the improvement to future work.

Learning Time Bias. TransV learns time bias functions T (·) and
S(·) to weight the importance of the recency of historical purchases
on repeated purchases.T (·) captures the relative importance within
the historical purchases, while S(·) captures the importance with re-
spect to general collaborative filtering. On our experimental dataset,
these functions are learned as piecewise constant functions on
equal-spaced bins each representing a week.
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Figure 5: The learned time bias functions T (·) (a) and S(·) (b)
from the four experimental datasets. The time axis describes
the number ofweeks passed from thehistorical purchase till
the prediction time.

Figure 5(a) shows the learned time bias T (·). We observe a gen-
eral pattern that the importance of historical purchases decreases
when the purchase occurs further in the past. The result implies
that recently purchased products are more likely to be repeatedly
purchased. We also notice that the time bias function for Amazon
Grocery shows a slightly different pattern: it first increases then
decreases. This can be explained by the fact that grocery products
are generally consumed for a few weeks before being repeatedly
purchased, e.g., trash bags, drinks. Interestingly, we observe a spe-
cific periodic pattern on the two cross-channel datasets, and the
local peaks occur on a monthly basis. This is due to the subscription
feature provided by Amazon where customers can elect to subscribe
to products monthly.

Similar results are observed for S(·) from Figure 5(b): rrecently
purchased products are more likely to be repeatedly purchased, thus
playing amore important role in the recommenation generation.We
note that S(·) of Instacart decreases for the first several weeks and
then approaches zero. This is because customers with greater than
the maximum gap (30 days) between two consecutive purchases
are filtered out. This results in a skewed distribution of time since
the last purchase, leading to the diminishing of S(·) after several
weeks.

5 CONCLUSION
We presented TransV, a neural transfer network that addresses the
data sparsity issue of voice-based recommendation by transferring
customers’ shopping patterns from the Web to Voice. It employs
multi-level tri-factorization to capture the similarity and dissimilar-
ity of customers’ shopping patterns on the Web and Voice, thereby
allowing effective Web-to-Voice transfer, while taking into account
distinct voice shopping patterns. TransV is seamlessly integrated
with a recency-based copy mechanism to capture the prevalent be-
havior of repeated purchases on Voice. Our extensive evaluation on
multiple real-world datasets, including two cross-channel datasets
from Amazon, shows that TransV significantly improves the per-
formance of voice-based recommendation. Our analysis further
offers valuable insights into customers’ voice shopping behaviors,
e.g. recent purchases are more likely to be repeated. As future work,
we plan to study how to integrate TransV with natural language
generation for conversational recommendations.
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