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Abstract

Complexity is crucial to characterize tasks performed by hu-
mans through computer systems. Yet, the theory and prac-
tice of crowdsourcing currently lacks a clear understanding
of task complexity, hindering the design of effective and effi-
cient execution interfaces or fair monetary rewards. To un-
derstand how complexity is perceived and distributed over
crowdsourcing tasks, we instrumented an experiment where
we asked workers to evaluate the complexity of 61 real-world
re-instantiated crowdsourcing tasks. We show that task com-
plexity, while being subjective, is coherently perceived across
workers; on the other hand, it is significantly influenced by
task type. Next, we develop a high-dimensional regression
model, to assess the influence of three classes of structural
features (metadata, content, and visual) on task complexity,
and ultimately use them to measure task complexity. Results
show that both the appearance and the language used in task
description can accurately predict task complexity. Finally,
we apply the same feature set to predict task performance,
based on a set of 5 years-worth tasks in Amazon MTurk. Re-
sults show that features related to task complexity can im-
prove the quality of task performance prediction, thus demon-
strating the utility of complexity as a task modeling property.

Introduction

The concept of task is central to human computation and
crowdsourcing in general. It refers to a set of activities to be
performed by an individual, mapping to an operation, con-
trol or synthesis process in a human computation algorithm
(Law and von Ahn 2011). Tasks play a significant role for all
the actors involved in crowdsourcing campaigns: their de-
signers — i.e. the requesters; their executors — i.e. the work-
ers; and the platform (e.g., Amazon MTurk), which hosts
them and enables their discovery, assignment, and reward.
Studying task properties is key for addressing core crowd-
sourcing problems such as task assignment and optimiza-
tion, and worker retention (Yang and Bozzon 2016). To this
end, previous research extensively covered the study of task
meta-properties, e.g., setting appropriate rewards (Cheng,
Teevan, and Bernstein 2015a), with the goal of improving
the effectiveness of human computation algorithms, and the
quality of crowdsourcing output in general. Time is the di-
mension along which the human cost (e.g., fatigue, stress)
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associated with the execution of crowdsourcing tasks has
been typically quantified. Incentives such as monetary re-
wards strongly depend on the estimation of task completion
time. Complexity, instead, reflects not only temporal de-
mands of task execution, but more holistically the real cogni-
tive effort that performers need to put into the completion of
tasks. Interestingly, this task property has so far been mostly
neglected by crowdsourcing research.

Objective Complexity has been identified as one of the
most important task properties in a variety of fields study-
ing the relationship between humans and computer artifacts.
It is a construct that is widely used in behavioural sciences,
towards investigating task cognitive load; nevertheless, it is
surprisingly difficult to describe. To advance the theory and
practice of crowdsourcing, we advocate the need for a sys-
tematic examination of how task complexity is perceived by
workers, what contributes to task complexity, and of how it
affects execution performance and output quality.

Being able to measure and predict task complexity can be
highly beneficial for both workers and requesters. Example
applications include more accurate reward estimation for a
given task, better task routing approaches that take into ac-
count worker skills and expertise, and simpler worker repu-
tation management by letting workers decide at which level
of complexity to work without risks of compromising their
reputation (e.g., a worker may want to start working on tasks
with low complexity and increase it as she becomes more
confident). Crowd answer aggregation (Venanzi et al. 2014;
Sheshadri and Lease 2013) and evaluation of worker perfor-
mance (Jung and Lease 2015a; 2015b), where the complex-
ity of the completed task can be taken into account when as-
sessing work quality, may also benefit from it. Finally, a bet-
ter understanding of task complexity dimensions may also
inform better governance within enterprise crowdsourcing
(i.e., tasks crowdsourcing within an enterprise to the crowd
consisting of company employees) where different socio-
logical issues exist (e.g., workload balance, different reward
schemes, etc.) (Vukovic, Laredo, and Rajagopal 2010).

Original Contributions This paper makes a concrete step
towards advancing our understanding of the complexity of
crowdsourcing tasks and its quantification. We borrow from
one of the most widely-used task complexity taxonomies
(Campbell 1988), focusing on task complexity as a prop-
erty of tasks perceived by workers during the interactions



between them, i.e., subjective task complexity. Specifically,
we seek answers to the following research questions:

e RQ1: How is the complexity of crowdsourcing tasks per-
ceived by workers, and distributed over tasks?

e RQ2: Which task features can characterize crowdsourc-
ing task complexity, and based on them how to predict
task complexity in an automatic way?

o RQ3: How do task complexity features affect task perfor-
mance?

By re-instantiating 61 tasks published in Amazon MTurk,
we collect subjective complexity evaluations from workers
by using the NASA Task Load Index. We define a quan-
tifiable measure of subjective complexity (i.e., Mean Com-
plexity Score), which shows that task complexity is coher-
ently perceived by different workers, and which we show to
be significantly influenced by task type. To understand the
influence of task design on complexity perception and to ul-
timately develop an automatic way for measuring task com-
plexity, we propose a high-dimensional regression method,
named MFLR, to model the key dimensions of complexity
from three classes of structural features of a crowdsourc-
ing task, including metadata, semantic content, and visual
appearance. We show that both the visual appearance and
language used in task description can largely influence the
perception of task complexity, and thus can be used to mea-
sure it. Then, we demonstrate that the same feature set can
be used to improve task throughput prediction. We show
that complexity is a relevant task modeling property, thus
contributing a better understanding of how task formula-
tion can affect task execution performance in crowdsourcing
markets.

Related Work

Task Complexity Complexity is a multifaceted property
of human-executed tasks, for which it is difficult to establish
a holistic definition. It is generally agreed that rask com-
plexity (Campbell 1988; Wood 1986) depends on both ob-
jective task properties and individual characteristics of the
task doer. As such, task complexity can be operationalized
in terms of: 1) intrinsic complexity, which does not account
for subjective perception and individual differences of task
doers, but focuses exclusively on the features of the task; 2)
subjective complexity, which measures the task as a func-
tion of the perception and handling of its performers; and
3) relative complexity, which considers the relative relation-
ship between the difficulty of the task and the capabilities of
the task doers. Subjective and intrinsic task complexity are
related, as the former can be used to explain how the latter
is handled by workers. In a comprehensive review of lit-
erature in information systems and organizational behavior,
(Campbell 1988) concluded that “any objective task charac-
teristic that implies an increase in information load, infor-
mation diversity, or rate of information change can be con-
sidered a contributor to complexity”. In this paper we focus
on subjective complexity of crowdsourcing tasks, aiming at
its quantification and the identification of task features that
contribute to it.

Measuring Complexity of Crowdsourcing Tasks Previ-
ous work investigated the relationship between task length
and the trade-off between execution speed and result qual-
ity, showing how decomposition into simpler micro-tasks
might lead to slower completion time but increased accu-
racy (Cheng et al. 2015b). This recent result indicates even
further the need for understanding the impact of task com-
plexity on the dynamics of a crowdsourcing marketplace and
how this affects all actors involved. While task complexity
has been used in other work on crowdsourcing — e.g., by
means of a post-task questionnaire (Cheng et al. 2015b) or
for the purpose of measuring worker effort and motivation
(Rogstadius et al. 2011), our work is the first one looking
at the different factors affecting perceived task complexity
and to propose and evaluate methods to predict it given task
properties.

(Cheng, Teevan, and Bernstein 2015a) propose a method
to quantify the effort involved in task execution, meant to
be used to estimate the appropriate monetary rewards for a
given task. The approach is based on a pilot launch of the
task, within which the time available for task completion is
selectively manipulated. The approach is able to estimate the
time needed to obtain completion while achieving a given
output accuracy level. W.r.t. (Cheng, Teevan, and Bernstein
2015a), our work aims at measuring task complexity beyond
completion time, and in a fully automated way, i.e., avoid-
ing the need for a task to be “piloted” in order to estimate
its required effort. We use a standard method to measure
the ground truth perceived complexity of a task — that is the
NASA Task Load Index (NASA-TLX) — and instrument a set
of features (i.e., metadata, content, and visual, fully com-
putable from the task data and html code) to predict task
complexity.

NASA-TLX finds application in a variety of experimen-
tal tasks (Hart 2006), including the domains of information
retrieval (Halvey and Villa 2014), Human Computer Inter-
action (Lischke et al. 2015). Recently, it has been also used
in crowdsourcing, as a tool to assess subjective judgment of
task difficulty (Mitra, Hutto, and Gilbert 2015), or to sup-
port the development of semi-automatic reward strategies
(Cheng, Teevan, and Bernstein 2015a). The focus of our
work is on reaching a better understanding of the different
dimensions involved in measuring the subjective complex-
ity of a crowdsourcing task. This will allow the creation of
tools and quantitative measures to support worker and re-
quester interaction, and it paves the way for novel research
focusing on crowdsourcing of complex tasks (Kittur et al.
2013).

Micro-task Crowdsourcing Markets Micro-task crowd-
sourcing platforms are becoming more and more popular for
both academic and commercial use. A variety of tasks is
being crowdsourced over these platforms, with workers ex-
ecuting them in exchange of a small monetary reward. A
taxonomy of popular micro-task type has been proposed by
(Gadiraju, Kawase, and Dietze 2014), with audio transcrip-
tion and survey being identified as two of the most popular
task type (Difallah et al. 2015). In our work we use the same
taxonomy to characterize tasks first and verify the impact of
task type on complexity later.



Measuring and Modeling Task Complexity

To enable more efficient and fair mechanisms for microtask
execution, we need a better understanding of which task fea-
tures influence the success and effectiveness of online work.
To this end, it is crucial to quantify the complexity of the
tasks that humans (workers) have to carry out through (or in
collaboration with) computer systems.

Measuring Complexity with NASA TLX

In literature, hardly any characterization of crowdsourcing
task complexity has been explored. We introduce here meth-
ods for characterizing and quantifying subjective complexity
towards answering RQ1.

Subjective complexity is defined in terms of workers’ ex-
perience with a task (Campbell 1988). It relates to the no-
tion of workload, since it is defined as the perception of the
level of complexity associated with the performance of a
task. Subjective complexity is related to intrinsic complex-
ity, but they are not necessarily identical. Intuitively, tasks
of a given intrinsic complexity might be more demanding
for a worker than another. Also, tasks can require high ef-
fort (high subjective complexity) without necessarily being
structurally more complex (arguably, a text summarization
task is more demanding than an image annotation one), but
other tasks might be demanding due to their structural com-
plexity (e.g., a long survey with many radio buttons).

In the ergonomics literature, many instruments exist
to measure workload, mostly based on self-assessment.
Among them, the NASA Task Load Index (NASA-TLX)
(Hart and Staveland 1988) is the most widely adopted.
NASA-TLX is “a multi-dimensional rating procedure that
provides an overall workload score based on a weighted av-
erage of ratings on six sub-scales: Mental Demands, Phys-
ical Demands, Temporal Demands, Own Performance, Ef-
fort and Frustration”. The test is straightforward: after com-
pleting the task to be evaluated, subjects are asked to rate
workload along each of the subscales (typically, through 20-
point likert scales ranging from 0 to 100, with endpoints an-
chored “low” and “high”). Then, subjects perform a pair-
wise comparison of the subscales, chosing among a pair the
subscale which contributes the most to the overall workload.
The pairwise comparison provides the relative weighting for
each subscale (Hart and Staveland 1988)in the final overall
NASA-TLX score, which is then determined as the weighted
sum of each subscale score multiplied by the corresponding
weight. In this work we adopt the resulting TLX score, rang-
ing between 0 and 100, to measure subjective complexity of
crowdsourcing tasks.

Modeling Complexity with Task Features

Our second research question (RQ2) concerns determining
which quantifiable and immutable properties of a task can
be used to estimate subjective complexity. The focus is on
properties that relate to the task structure (e.g., instantiation
properties, graphical layout, instructions) but not to its mat-
ter. The difference is subtle but significant. A task can be
instantiated having the same structure (e.g. GUI and in-
structions), but different content. For example, the same task
structure could be instantiated to ask workers to search for

a bird in a picture. In this case, the specific picture pro-
posed to the worker for the search would be the matter. Pre-
senting the worker with a realistic picture of a bird rather
than Miro’s “The Migratory Bird” may significantly alter
the complexity of the task. Investigating the influence of
task matter on crowdsourcing task complexity poses issues
of (1) data retrievability and (2) (multimedia) content inter-
pretation, which is beyond the scope of this paper. In the
following we explore three classes of task structural prop-
erties, and specifically: metadata features, content features,
and visual features. We provide a brief introduction to each
category, and refer the reader to the companion page for a
full description of the feature set!.

Metadata Features include task attributes defined at task
creation time. They are used by a requester to provide an
overview of the activities to be performed (i.e. Title and
Description length), the required qualifications (e.g.
worker Location and minimum Approval Rate), the
estimated Allotted Time time and reward, and the
number of Initial Hits. Our hypothesis is that meta-
data features reflect complexity as seen from the requester’s
point of view: intuitively, the task requester would reward
higher compensation for more complex tasks, or provide a
longer description to attract suitable workers.

Content Features aim at capturing the semantic richness
of a task. Research in related domains — e.g. commu-
nity question-answering systems (Yang et al. 2014), web-
site complexity (Ivory, Sinha, and Hearst 2001) — sug-
gests that content features could be indicative of the re-
quirements and quality of task specification, which could in
turn influence the perceived complexity of a task. Content
features include numerical properties like the Amount of
Words, Links, and Images in the task body, but also the
Keywords used to concisely describe the task; the actual
words (unigrams) contained in its title, description, and
body; and the high-level Topics, extracted from task title
and content using Latent Dirichlet Allocation (LDA) (Blei,
Ng, and Jordan 2003). We hypothesize that the content of
a task captures its requirements and hence its complexity.
Also, the use of language features like unigrams can help
highlight poorly formulated task instructions, which may in-
crease workers’ cognitive load at execution time.

Visual Features relate to visual properties of a task, in-
cluding its layout and color palette. As the visual complex-
ity of a Web page is known to influence the users’ cog-
nitive effort during interaction (Harper, Michailidou, and
Stevens 2009), as well as users’ aesthetics impression (Rei-
necke et al. 2013), we hypothesize that the look and feel of a
crowdsourcing task can also have influence on its complex-
ity. We study visual features that insist on (1) the general
Web page structure (Ivory, Sinha, and Hearst 2001) such as
Body Text Percentage, amount stylesheet and
script files, and (2) the visual areas (Reinecke et
al. 2013) such as number of Text groups and Image
areas?. Intuitively, one could expect features like the
amount of text groups to be positively correlated with

"https://sites.google.com/site/hcomp2016complexity/
>The code used to extract visual areas is available at
http://iis.seas.harvard.edu/resources/aesthetics-chil3/



Task Type Count Percentage
Survey (SU) 4 6.6%
Content Creation (CC) 19 31.15%
Content Access (CA) 4 6.6%
Interpretation and Analysis (IA) 17 27.87%
Verification and Validation (VV) 2 3.3%
Information Finding (IF) 14 22.95%
Other 1 1.6%

Table 1: Distribution of task type in dataset.

task complexity, while some others such as the amount of
Emphasized Body Text Percentage to be nega-
tively correlated with task complexity — a higher empha-
sized body text percentage may suggest that the task de-
signer has put effort in managing the user experience. We
also study color-related features, previously investigated on
images (Hasler and Suesstrunk 2003) and websites (Rei-
necke et al. 2013). Colorfulness is considered as one
of the most notable features that influence emotional reac-
tion (Coursaris, Swierenga, and Watrall 2008). We there-
fore hypothesize that it could also influence worker’s mood
during task execution, and thus influence their perception of
task complexity. The color features we will study include
the histogram of colors, and HSV values.

Is Complexity Coherently Perceived by
Workers?

Our study started with an experiment where we collected
task complexity evaluation from workers. This section intro-
duces our experiment and the analysis of how task complex-
ity is perceived by workers and distributed over task type.

Experiment

Setup To collect subjective complexity data, we first cre-
ated a dataset of real MTurk tasks, to be then re-instantiated,
executed, and evaluated by workers. As a first step, we ex-
tended mturk-tracker? to enable the retrieval of the complete
set of resources associated with a task posted on MTurk, in-
cluding meta-data, formatting (e.g. Javascript, CSS) and,
when publicly available, content (e.g. images, audios). We
performed the crawling during the first week of August
2015, retrieving 5487 tasks. We composed our final dataset
of 61 tasks by picking from each requester active in the ob-
servation week one HIT per task type. The considered tasks
have been labeled by the task type classifier developed in
(Difallah et al. 2015) for the task type taxonomy proposed
in (Gadiraju, Kawase, and Dietze 2014). This was neces-
sary because HITs from the same requester are often simi-
lar to each other, and the majority of HITs are posted by a
small number of requesters. Selecting one HIT per task type
and requester guaranteed diversity in the task set in terms
of both HIT content and visual presentation, as well as in
task type; an overview of the composition of the dataset is
given in Table 1. We then instantiated the 61 tasks based
on the crawled task data. To minimize the chance of learn-

3http://www.mturk-tracker.com/

ing bias, we use another platform, i.e. Crowdflower, to col-
lect the complexity evaluation for these tasks. We turned
to the CrowdFlower crowd also to include in the evaluation
the judgment of workers from a broader set of countries,
thus reducing the risk of country-specific biases. Then, we
appended at the end of each task the NASA-TLX question-
naire of task complexity assessment, and we asked workers
to fill it in with respect to the task they just executed. Work-
ers were recruited among Crowdflower Level 3 contributors,
and tasks and TLX completion were performed in an exter-
nally hosted server.

To obtain reliable complexity assessment, we aimed at
having 15 workers executing each task and completing the
related TLX. In addition, to control for the quality of the
complexity evaluations, we implemented a post-hoc task ex-
ecution filtering mechanism. Due to lack of supervision dur-
ing task execution in crowdsourcing, misunderstandings of
the task instructions, as well as low engagement or commit-
ment to the task, unreliable task outputs are to be expected
(HoBfeld et al. 2014; Eickhoff and de Vries 2013). As TLX
entails subjective assessment of complexity, it was not pos-
sible to adopt a quality control based on golden answers
(Alonso, Marshall, and Najork 2014). Therefore, we imple-
mented a mechanism of control for self-consistency. When
presenting the workers with the 15 pairs of subscales at the
end of TLX questionnaire, we repeated three pairs twice
(non consecutively, so the workers would be less aware of
the repetition). We would expect unreliable workers to skip
through these pairs, randomly selecting an answer to finish
the task fast, and possibly giving inconsistent answers on the
repeated pairs.

Results The 61 crowdsourcing tasks were executed and
evaluated by 13 to 16 workers each (M = 14.8 + 0.572).
In total, we obtained 903 evaluations, including: (1) a set of
6 judgments of complexity, each expressed along a different
subscale, representing a different complexity factor (Mental,
Physical, Temporal, Performance, Effort and Frustration);
(2) a set of six weights, each representing the relevance of
each factor in computing the final task complexity and (3)
an overall fask complexity score. For each completed task,
we also recorded both the time taken by each worker to com-
plete it and the time taken to fill in the follow-up TLX ques-
tionnaire.

The filtering of task executions and evaluations was en-
acted when: 1) more than two mistakes were made in the
control questions (i.e., repeated pairs of complexity factors
in the questionnaire); and 2) the time taken to complete the
TLX questionnaire was outside the range M EAN_CT (i) +
2% std_CT(i), where M EAN_CT (i) is the average across
workers of the time taken to fill in the questionnaire for task
i and std_CT(i) is the related standard deviation.* For 34
of the 903 TLX completions (3.8%), workers made mistakes

*MEAN_CT was computed per each task separately, rather
than across tasks. This is due to the presence of a significant ef-
fect of the task ¢ on the TLX completion time (Kruskal-Wallis Test,
H = 142.89,p < 0.001). This suggests that the characteristics of
the task may have influenced the engagement of the worker with
the task execution (and thereby questionnaire completion); work-
ers poorly engaged with the task may have completed the TLX skip-



in all control questions; in 107 cases (11.8%), 2 out of the
three control questions were answered in a wrong way. As
a result, 15.6% of the evaluations were discarded. Of the
remaining 762, 52 took either too short or too long to be
completed (5.8%); hence, the following analysis is based on
the remaining 710 evaluations (11.64 £ 1.693 per task).

Perception and Distribution of Task Complexity

Inter-evaluator Agreement The purpose of the subjec-
tive study was to establish a Mean Complexity Score (MCS)
for each task, expressing the complexity of a given task as
perceived, on average, by a crowd of workers executing it.
This was functional to our follow-up experiment of com-
plexity prediction. To establish MCS as ground truth, we
verify the presence of a sufficient agreement among work-
ers (evaluators) in expressing complexity scores: a too large
disagreement would give large confidence intervals of the
MCS, making them unreliable as ground truth.

Traditional inter-evaluator agreement measures are not
applicable in our case, as they often assume repeated mea-
sures (e.g., Cronbach’s alpha). Krippendorff’s alpha does
not have this limitation, but it has been shown to be of lim-
ited reliability for subjective evaluation tasks (Alonso, Mar-
shall, and Najork 2014). A possible different way to look at
the problem is to check the extent to which individual eval-
uations are spread around the mean of the complexity (or
complexity factor) value per task. This type of analysis, of-
ten used in visual quality assessment tasks, can be applied to
any type of subjective evaluation involving a pool of partici-
pants scoring the same item (in our case, a task ¢), for which
a mean opinion score along some dimensions (complexity
and its factors, in our case) is sought. The SOS hypothesis
(HoBfeld, Schatz, and Egger 2011) is a useful tool to per-
form such type of analysis. It stems from the observation
that Mean Opinion Scores (MOS; in our case, mean com-
plexity - or complexity factor - scores for the tasks) and the
spread of the individual scores around the MOS (as mea-
sured by their Standard Deviation, or SOS) are linked by a
squared relationship. Specifically, if the dependent variable
(i.e., complexity) is measured on a K-point scale, with v,
being the lowest value of the scale and v being the highest,
for each task i we can define the relationship SOS(7)? =
a(—=MOS(i)? + (v1 + vg)MOS(i) — (vy * vg)), with
MOS(i) the Mean Opinion Score for task ¢ and SOS(i)
the related standard deviation. The parameter « that regu-
lates this relationship can be found by fitting the MOS to the
SOS data. Its value can be compared with that of other sub-
jective evaluation tasks, which are deemed to be more (high
«) or less (low «) prone to high variability in evaluations.

Table 2 shows « values computed for complexity eval-
uations as well as evaluations of the individual complex-
ity factors (mental, physical, temporal, performance, ef-
fort and frustration). « values range between 0.25 for
the effort factors and performance and 0.29 for the frus-
tration factors. Complexity evaluations have an « value
of 0.28. This value is similar to what could be obtained
in other subjective evaluations tasks (e.g. smoothness of

ping through it (too fast) or doing other things while at it (too slow),
either ways producing poorly reliable task evaluations.

web surfing, VoIP quality, cloud gaming quality, or im-
age aesthetic appeal (Hoffeld, Schatz, and Egger 2011;
Redi and Povoa 2014), and we consider it acceptable. We
thus conclude that subjective task complexity is coherently
perceived by workers. The scores per task could be therefore
aggregated into Mean Complexity Scores (MCS), and Mean
Factor Scores (MFS) for each individual complexity factor.
Figure 1 shows the MCS and MFS per task plotted against
their related SOS, along with the curve fitting the data (p-
value < 0.001 for each complexity factor) according to the
SOS relationship described before.

Subjective Task Complexity Scores We now analyse the
output of the NASA-TLX questionnaire. We are interested
in observing whether some complexity factors would get
higher scores than others, and how users deemed each fac-
tor relevant in the final complexity score. In this respect, we
computed, in addition to MCS and MFS, also Mean Factor
Weights (MFW), as the average weight value given by indi-
vidual evaluators (i.e., workers) to the same task.

Kolmogorov-Smirnoff and Levene tests revealed MCS,
MFS and MFW to be normally and homogeneously dis-
tributed, thus allowing the application of parametric anal-
ysis. The 61 tasks obtained an average complexity value of
63.78+11.56. Figure 2 shows the factor values scored by the
61 tasks on average. A one-way ANOVA setup with com-
plexity factor as independent value and mean score per task
as dependent variable, revealed that tasks were scored sig-
nificantly different along the six factors (F' = 22.414,df =
6,p < 0.001). Specifically, tasks scored lower (accord-
ing to post-hoc tests with Bonferroni correction) in phys-
ical complexity, and highest in mental complexity and ef-
fort. Considering that online crowdsourcing tasks usually
involve very little physical labour, and more mental effort,
these results are in line with the expectations. Perceived
performance was also scored significantly lower than men-
tal complexity and effort (p < 0.001 in both cases); this
indicates that workers were, on average, relatively happy
with their performance with the task (the lower the score on
the performance sub-scale, the better the perceived perfor-
mance). Finally, frustration scored significantly lower than
all other factors (except for physical complexity), which
suggests workers to be rather satisfied with the tasks we in-
stantiated.

To understand the relative importance of each factor in
the overall complexity perception, we also looked at the dis-
tribution of the MFW across tasks. An ANOVA with Bon-
ferroni correction (F' = 170.821,df = 5,p < 0.001), es-
tablished that all factors had significantly different weights
for our tasks (see Figure 3), except for effort and mental (p
= 0.767). The latter two obtained, across tasks, relatively
high weights indicating that mental complexity and effort to
complete the task are very relevant in judging the complex-
ity of crowdsourcing tasks. Interestingly, the highest weight
was assigned to performance. Whereas mental complexity
was expected to have high relevance in the overall complex-
ity, the fact that workers seem to care about the degree to
which they perform the task properly, suggests that intrin-
sic motivation (as in willingness to perform the assigned job
properly) may play more than a marginal role in workers sat-
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Figure 2: Mean Scores per complexity factors across the
61 instantiated tasks. “*” indicates mean differences with
significance to the .05 level, “**” indicates mean differences
with significance to the .01 level.

isfaction and overall motivation to complete complex crowd-
sourcing tasks. Frustration, which obtained on average the
lowest weight, seems instead not impact majorly the overall
perceived complexity of the task.

Finally, we verified whether task type (see Table 1) had
an influence on perceived complexity, as well as task per-
formance time, and TLX completion time. As complexity
scores were normally and homogeneously distributed when
clustered according to task, we used again parametric test-
ing. Note that we excluded from the analysis the task of type
“other” as we only had one datapoint for that category. Task
type was found to have a significant effect on complexity
(F = 3.729, df = 5, p = 0.06). This effect could be en-
tirely explained by the significant difference in complexity
between Content Creation and Interpretation and Analysis
tasks, the latter found to be less complex than the former
by an average 11.61 points (p = 0.017 after Bonferroni
correction). Task performance time and TLX completion

Complexity factor weights across tasks

0,30

0,25

0,20

Mean Score

0,154

0,10-

Figure 3:

mental temporal performance effort frustration

Error bars: 95% CI

physical

Mean values of the weights assigned to the six

complexity factors throughout the 61 instantiated tasks. All
means are significantly different except those of mental
complexity and effort.

time were found to be non-normally distributed. A Kruskal
Wallis test revealed that for both dependent variables, task
type did not have a significant effect (for task execution
time: H = 9.067, p = 0.170; for TLX completion time:
H =2.159, p = 0.866).

Task Complexity Prediction

Having collected subjective complexity scores for our 61-
task dataset, we then checked whether our proposed features
were useful to predict it.

Feature sets. As input for our model, we experiment
separately with each of the feature categories described be-
fore (metadata, content, and visual features). We also test a
fourth prediction configuration, in which a LDA is applied
to content features to extract semantic topics, thereby reduc-
ing the dimensionality of the feature set for model training
and testing. The dimensionality of metadata, visual and se-
mantic features was 9, 14, and 1447, respectively.



Feature Regression Model
Set Linear Lasso MFLR Random Forest
Metadata 13.374+4.18 13.16t4.24 - 9.94+1.68
Visual 14.86+4.01 12.504+2.07 9.97+1.28 10.2141.15
Content 12.87+1.64 9974127 9.18+1.83 10.0041.47
Content LDA  10.34+1.84  9.23+1.44 - 11.80£1.18

Table 3: Subjective complexity estimation, measured by mean absolute error (MAE). The best predicting model for each feature
class is highlighted in bold; the best performance across all features with different regression models is underlined.

Regression models. Due to the high dimensionality of
content features, we propose a novel regression model, i.e.
matrix factorization boosted linear regression (MFLR), that
performs at the same time 1) dimension reduction, via non-
negative matrix factorization (Lee and Seung 1999), and 2)
regression, via Lasso (Tibshirani 1996). The key idea of
MFLR is to learn latent complexity dimensions (L.CD’s) that
are predictive for task complexity. To do so, the model
jointly optimizes matrix factorization and regression func-
tions as follows

min

S X - UV A[UWT - Y

M
+Ax (10 + IVIE) + Av WL

where || X — UV7T||% factorizes the task-feature matrix X to
two smaller matrices, i.e. U as the task-I1.CD matrix and V as
the feature-1.CD matrix; |[UWT — Y% takes task L.CD’s (U)
for predicting the complexity (Y). The regularization terms
Lx (U, V) and Ly (W) are implemented with Frobenius and
Ly norm, and regulated by Ax and Ay respectively °.

In MFLR, feature importance can be computed as
Fimportance = VW7, where feature f; has contribution
V[i{)WT, with V[i] denoting the distribution of feature f;
over the learned latent complexity dimensions.

To assess the performance of MFLR, we experiment with
3 methods: 1) Linear regression, used as the baseline
model; 2) Lasso, which is a linear model with feature se-
lection; and 3) Random forest, which is an ensemble
model known for its good generalization capabilities.

Parameter setting. For Lasso, we use the default set-
ting in sklearn®, in which the regularization parameter is
set to 1, which implies that the error function and the regular-
ization term have the same weight. To make the results com-
parable, we also set A = Ay in MFLR. Using a grid search
on the training data, we set the parameters of MFLR as fol-
lows: Ax = 1,A = Ay = 0.01. To account for the Content
features dimensionality variance, we set the number of top-
ics to be extracted by LDA to 10, so as the number of latent
complexity dimensions of MFLR.

Results Table 3 summarizes the resulting prediction per-
formance. We ran a 5-fold cross-validation and report
the averaged performance measured by mean absolute er-
ror (MAE). The ground truth task complexity is 63.78 +
11.46 based on crowd worker annotations. The MAEs of

SWe refer the reader to our companion page for the detailed
optimization algorithm.

Shttp://scikit-learn.org/stable/modules/generated/sklearn.linear
_model.Lasso.html

Visual Feature  Imp. | Semantic Feature Imp.
visualAreaCount  3.25 linkCount ~ 2.42
hueAvg  0.09 wordCount 1.37
keyword: audio  0.09

keyword: transcribe  0.07

keyword: writing  0.06

imageAreaCount  -0.27 unigram: clear -0.06
colorfulnessl  -0.63 unigram: identify -0.07
scriptCount ~ -1.52 uigram: date  -0.09
valAvg -1.71 keyword: easy  -0.10
cssCount  -1.82 imageCount -1.01

Table 4: Features more correlated (positively and nega-
tively) with subjective complexity.

different configurations fall into the range (9, 14), an ac-
ceptable error considering the ground truth figures. Over-
all, content features yield the best prediction performance
with MFLR, although LDA-reduced content features with
Lasso follow closely. Notably, prediction with visual fea-
tures is also significantly improved with MFLR, a result
that shows the good performance achievable by MFLR also
with a lower number of dimensions. We account these re-
sults to the fact that MFLR re-combines features into la-
tent complexity dimensions, projecting the input data into
a (low-dimensional) transformed space better characterizing
task complexity. This has obvious benefits with respect to
Lasso, which uses the original feature space instead; with
respect to LDA, the advantage of MFLR is in the fact that the
latent complexity factors derivation is guided by the regres-
sion, thereby increasing the predictive power of LCDs’.

Important features. Table 4 summarizes the visual and
content features most positively and negatively correlated
with complexity. The most positively correlated visual fea-
ture is the number of visual areas, indicating that more visual
items lead to higher task complexity perceived by workers.
The presence of curated layouts and interactions (CSS and
Javascript) are negatively correlated features with complex-
ity, suggesting that a better design of the task presentation
and more interactive components could decrease the com-
plexity perceived by workers. Notably, the stronger visual
factoris valAvag,i.e. the “value” (or “lightness”) of the task
design. In content features, complexity is reflected from the
point of view of required actions to be performed by workers
(e.g., transcribe), task type (e.g., writing), and content mat-
ter (e.g. audio). The amount of task elements (text, images,
links) also plays a relevant role.



Can Task Complexity Features Help Improve
Task Performance Prediction?

As structural features of tasks have an influence on subjec-
tive complexity, we are interested in understanding if they
are also helpful in predicting task performance. This section
reports our efforts in applying the task complexity feature
set on task performance prediction, where we approximate
task performance by execution throughput. Our interest is in
1) evaluating the utility of using the complexity feature set
for throughput prediction, 2) understanding the features that
yield best prediction performance, and compare them with
the ones best for complexity prediction.

Experimental Setup

Data Preparation We operate on a five year dataset (Di-
fallah et al. 2015), collected from Amazon MTurk from
2009 to 2014. The dataset contains more than 2.56 M dis-
tinct batches, and 1300/ HITs. All batches in the dataset
are described by metadata, but only 55% of them are pro-
vided with task content. No task in the dataset contains all
the information (e.g. CSS stylesheets, external resources)
required to evaluate visual features. The throughput pre-
diction problem has been previously studied in (Difallah et
al. 2015). The goal is to predict the number of tasks ex-
ecuted in a predefined time span. We apply the same ex-
perimental methodology as in (Difallah et al. 2015). We
randomly select 50 time points, uniformly sampled from 5
months (June to October 2014) of MTurk market data. For
each time point, we predict the #tasks executed in the fol-
lowing hour, using as training data information about tasks
published and executed in the previous four hours. To avoid
biases due to the over-representation in the marketplace of
a specific requester, we sample the task space by select-
ing, for each requester, a single batch per task type. This
choice allows to keep an accurate distribution of task type,
while avoiding compensation for the inevitable skewness in-
troduced by big market players (Difallah et al. 2015). The
result is an experimental dataset consisting of 8675 tasks. To
better characterize prediction performance on batches with
different throughput magnitude, we divide the dataset into
three subgroups, according to the power-law distribution,
with batch size varying in the range of [1, 10), [10, 100) and
[100, 1000), respectively. For evaluation, we again use the
Mean Absolute Error (MAE) as a metric to measure predic-
tion performance.

Feature Sets As input for throughput prediction, we ex-
periment separately with each metadata and content fea-
tures. Visual features could not be tested due to their ab-
sence in the majority of tasks. We also include task and
market dynamic features, which are related to the execution
context of the task in the marketplace. Inspired by (Difal-
lah et al. 2015), we consider properties of the marketplace
in the observation interval, including: the total number of
Available HITs in the market (to account for market
size); the total number and relative size of Published and
Completed HITs (to account for market speed); and the
total amount of Available and Obtained Rewards
(to account for market value). The resulting feature dimen-
sionality is 9 and 11, respectively; content features dimen-

sionality varies according the number of unigrams in the
subgroup, leading to 26.4% ([1, 10)), 15.2k ([10, 100)) and
1.3k (]100, 1000)) content features, respectively.

Models and Parameter Setting We experimented again
with Linear regression, Lasso and Random Forest
regression. In this case of task performance predict on,
MFLR finds latent performance dimensions (LPD) drawn
from the considered feature classes. We also applied LDA on
content features for topic modeling. We set both the num-
ber of topics for LDA and the number of latent performance
dimensions of MFLR to 100.

Results

Table 5 summarizes the prediction performance obtained by
applying different feature classes to the considered regres-
sion models. The comparison of prediction performance
on different feature classes highlights how dynamic fea-
tures (i.e., the marketplace context) provide the least predic-
tion support; this is an interesting result, that hints to the
greater importance of objective task features for through-
put prediction. We observe that metadata feature achieves
good performance with Random Forest and content fea-
tures achieves good performance with Lasso. This is not
surprising, given that content features are of high dimen-
sionality and Lasso properly select predictive features for
task performance estimation. Interestingly, high-level se-
mantic features, i.e. topics extract via LDA, achieves bet-
ter performance than plain content feature with Lasso,
which shows that dimension reduction improves the pre-
dictive power of content features. Most importantly, con-
tent features achieves the best performance with MFLR com-
pared to all configurations when applied to (in batch groups
[1 — 10) and [10 — 100)), which is consistent with the com-
plexity prediction experiment. It is worth noting that the
configurations of [1 —10) and [10 — 100) are the ones where
the other models make the biggest errors, relatively to the
range within throughput varies.

Content features are more informative than metadata fea-
tures in low throughput groups ([1, 10) and [10, 100)), with
significant performance differences in both cases (p < 0.01,
Wilcoxon signed-rank test); however, metadata features
work better in the group [100, 1000), although with non sig-
nificant differences in performance (p = 0.36, Wilcoxon
signed-rank test). These results complement previous work
in throughput prediction (Difallah et al. 2015), where high
prediction performance is mainly guided by the Initial
Hits metadata feature. We show how the importance
of such feature significantly decreases in low throughput
groups, where content features have a prominent role. These
results might indicate that workers execute large batches
mainly due to the high volume of HITs available to be exe-
cuted, while for batches of smaller sizes the content of the
task have a bigger influence on workers’ decision for task
execution. Therefore requesters are recommended to better
design their tasks of small batch sizes.

Important Features. Table 6 (line 2-6) shows the latent
performance dimensions of content features that contribute
the most in prediction: the most important LPD; contains
terms related to the type of actions required from the worker



Feature [1,10) (GT: 3.01£2.35)

[10,100) (GT: 29.92+21.63)

[100,1000) (GT: 265.45+185.97)

Set Linear Lasso MFLR RForest Linear Lasso MFLR RForest Linear Lasso MFLR  RForest
Metadata 3.88 3.78 - 3.65 18.35 18.11 - 17.45 126.81 126.45 - 107.60
Dynamic 3.73 3.61 - 3.93 20.31 18.95 - 20.47 126.76  131.30 - 138.55
Content 518.29 3.42 2.72 4.50 576.44 16.86 15.65 20.53 26545 110.14 112.48 116.33
Content LDA 4.11 3.42 - 4.55 18.92 17.88 - 19.75 123.11  118.15 - 128.43

Table 5: Throughput prediction performance of different feature classes and regression models, measured by MAE. Results
are reported for three batch groups: throughput within the range of [1, 10), [10, 100), and [100, 1000). GT is the ground truth
throughput. In every group, the best performance among different regression models for each class of features is highlighted in
bold; the best performance among all feature classes for every group is underlined.

Impo. LPD, LPD, LPD; LPD,
LPD’s text find search expressions
and clip company relevance faces
Their copy online google emotions
main easy fast internet mimicking
unigrams | quick entry information camera
Impo. bonus copy easy categorization
unigrams | image  search instances  indentification

Table 6: Main LPD’s and unigrams that contribute the most
to throughput prediction.

\ - TP

know, words, exact
guidelines, shown

+ TP

photo, picture, text
1tem, identify, type

- CPX free, ask, based thank, best, easy
change, load, tell address, job, pay
notes, number, need accept, right
questions, answer transcribe, audio, images
+ CPX file, provide review, feedback, search

create, options, listed
save, issues, result
personal, send, unable

read, article, try
code, writing, sentence
carefully, follow, instructions

Table 7: Top-15 unigrams associated with each positive
(+) and negative (=) correlation with complexity (CPX) and
throughput (TP) prediction.

(arguably, copying and pasting of text are a simple actions to
perform); the second and third most important LPD’s reflect
performance from the point of view of task type (informa-
tion finding — find, online, google — is known to be among
the most demanding type of crowdsourcing tasks, in terms
of worker labour). Finally, the fourth LPD hints to the type
of annotation to be performed (subjective, looking for ex-
pressions and emotions), and to the type of content (images
and videos). Table 6 (line 7-8) summarizes the most impor-
tant unigrams across factors. Terms related to actions, task
type, and task matter emerge as most representative.

Features for Complexity vs. Performance. Content fea-
tures can be used to predict both task complexity and task
performance. Are there content features able to predict
both? We tested the presence of correlation between the
importance of features in complexity prediction and in per-
formance prediction. Results show a weak negative corre-
lation of feature importance. Significance (Pearson correla-

tion: -0.1308; p < 0.05) is present only for low through-
put ([1,10)) tasks. This result supports the findings from
the previous section, where low throughput tasks were the
ones more likely to benefit for content features for predic-
tion purposes. The negative correlation indicates the pres-
ence of features that, while hinting to higher task complex-
ity, can signal low completion performance, and viceversa.
We show these features in Table 7. The weak — yet signif-
icant — correlation is due to the existence of features hav-
ing consistent correlation, i.e. both associated positively
(respectively, negatively) with complexity and performance.
Unigrams describing task actions and task type are again the
ones more likely to be associated with consistent complex-
ity and performance prediction. For instance transcribe au-
dio unigrams are predictive of high complexity’ and higher
throughput in the low throughput ([1,10)) batches. This is
an unexpected result, that we can explain only by looking at
the MTurk market as a whole (Difallah et al. 2015), where
the presence of large batches devoted to audio transcription
might influence workers’ task selection strategy. Clearly,
further investigation focusing on the relationship between
task complexity, market dynamics, and execution perfor-
mance is needed, and it will be tackled in future work.

Conclusions

This work studied the subjective complexity (i.e., as per-
ceived by workers) of crowdsourcing tasks. We defined (1)
an operational way to quantify subjective complexity; (2)
a set of objective features (i.e., quantities computable from
the task metadata and HTML code) from which to predict
complexity automatically; and (3) a novel regression model,
MF LR, that shows superior performance for complexity pre-
diction. We were able to deliver a model predicting subjec-
tive task complexity in an accurate and fully automatic way;
features describing the semantic content of the task are most
predictive for complexity, followed closely by the features
describing the visual appearance of the task. We show how
this feature set is also useful to improve the prediction of
task throughput when workers’ task selection strategy is not
influenced by batch size.

Our automatic complexity predictors have the potential to
impact crowdsourcing research widely. We expect them to
be useful in deploying new strategies for workers retention
by, e.g., adjusting task complexity over a batch of tasks. We

7 Arguably, audio transcription requires a lot of attention for
proper execution.



also expect that measuring task complexity will create a bet-
ter communication channel between requesters and workers
thanks to the shared understanding of the required effort to
complete the task, as well as the implementation of more
fair compensation mechanisms. Our future work will focus
on understanding the effect of varying task complexity on
work quality, efficiency, and retention; efforts will also be
devoted in extending the breadth and scope of our subjective
complexity data, to yield more generalizable results.
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