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ABSTRACT
Existing feature-based recommendation methods incorporate aux-
iliary features about users and/or items to address data sparsity
and cold start issues. They mainly consider features that are or-
ganized in a flat structure, where features are independent and in
a same level. However, auxiliary features are often organized in
rich knowledge structures (e.g. hierarchy) to describe their rela-
tionships. In this paper, we propose a novel matrix factorization
framework with recursive regularization – ReMF, which jointly
models and learns the influence of hierarchically-organized fea-
tures on user-item interactions, thus to improve recommendation
accuracy. It also provides characterization of how different fea-
tures in the hierarchy co-influence the modeling of user-item in-
teractions. Empirical results on real-world data sets demonstrate
that ReMF consistently outperforms state-of-the-art feature-based
recommendation methods.

1. INTRODUCTION
Recommender systems aim to model user preferences towards

items, and actively recommend relevant items to users. To ad-
dress the data sparsity and cold start problems [23], feature-based
recommendation methods, such as collective matrix factorization
(CMF) [25], SVDFeature [4], and factorization machine (FM) [21],
quickly gain prominence in recommender systems. They enable the
integration of auxiliary features about users (e.g. gender, age) and
items (e.g. category, content) with historical user-item interactions
(e.g. ratings) to generate more accurate recommendations [24].

While commonly arranged in a flat structure (e.g. user gender,
age), auxiliary features can be organized in a “feature scheme”, i.e.
a set of features that includes relationships between those features.
Hierarchies are a natural yet powerful structure to human knowl-
edge, and they provide a machine- and human- readable descrip-
tion of a set of features and their relationships. Typical examples
of feature hierarchies include category hierarchy of on-line prod-
ucts (e.g. Amazon web store [19]), topic hierarchy of articles (e.g.
Wikipedia [10]), genre hierarchy of music (e.g. Yahoo! Music),
etc.. The benefits brought by the explicit modeling of feature re-
lationships through hierarchies have been investigated in a broad
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Figure 1: POI recommendation with auxiliary features hierarchy.

spectrum of disciplines, from machine learning [12, 11] to natural
language processing [10]. How to effectively exploit feature hier-
archies in recommender systems is still an open research question.
We here provide a running example to illustrate how hierarchical
feature structure can provide better recommendations.

Running Example. Consider a point of interest (POI) recom-
mender system [30], where the goal is to recommend a real-world
POI (e.g. a restaurant) to a user. User preferences can be influenced
by geo-cultural factors: for instance, the country of residence might
have an influence on user preferences for restaurants’ cuisine (in-
tuitively, an Italian and an American might have different culinary
tastes). Likewise, fellow countrymen might show different prefer-
ences according to their city of residence (arguably, citizens from
Boston and San Diego can show incredible different culinary pref-
erences). This scenario is represented in Figure 1: users are de-
scribed by auxiliary features that characterize their countries and
cities of residence. These features are organized in a hierarchy,
where cities are related to countries by a locatedIn relationship.

We consider the historical POI interactions in a given city of four
users in Figure 1: Alice and Bob, from Rome and Florence (Italy);
Charlie and Dave from Boston and San Diego (US). Italian users
(Alice and Bob) both show preferences towards Pizza, thus sug-
gesting a “national imprint” on their preferences. However, the two
users are differently influenced by their country of residence, as Al-
ice’s preference for pizza is weaker than that of Bob: Alice checks
in more at Lamp chop restaurants, while Bob checks in more at
Pizza restaurants. A similar observation holds also for Charlie and
Dave: the influence of US is weaker than that of Boston on Charlie,
while stronger than that of San Diego on Dave.

The example highlights how related features (a country and its
cities, linked by the locatedIn relationship) can co-influence user
preferences, although the strength of the co-influence varies across
relationship instances (e.g. Italy-Rome, Italy-Florence). This ob-
servation suggests the need for feature relationships (e.g. the lo-
catedIn relationship) to be properly considered in recommendation
methods. This co-influence could be known as a priori, but it is
often best learnt from historical user-item interaction data.
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Existing feature-based methods, e.g. SVDFeature [5], CMF [25]
and FM [21], ignore the useful information provided by feature re-
lationships, imposing a conversion step that transforms a hierarchi-
cal structure into a flat one. To fully exploit feature hierarchies, the
main challenge is to model the co-influence of features on user-item
interactions, determined by both the feature relationships in the hi-
erarchical structure and the historical user-item interaction data.

Original Contribution. We propose a novel approach that mod-
els the co-influence of hierarchically-organized features on user-
item interactions, and learns the strength of such co-influence from
historical user-item interaction data, to improve recommendation
performance. We first define the influence of an individual feature
as regularization on latent factors, then combine the regularization
of individual features by weighting them recursively over the hi-
erarchy, from root to leaves, according to their organization. The
regularization of the feature hierarchy, named recursive regular-
ization, is expressed as a regularization function parameterized by
the weights associated to each feature. We then propose a novel
recommendation framework ReMF, that integrates recursive regu-
larization into the matrix factorization model to better learn latent
factors. By learning the values of weights of each feature from the
historical user-item interaction data, ReMF characterizes the influ-
ence of different features in a hierarchy on user-item interactions.
We demonstrate the effectiveness of ReMF with an extensive val-
idation performed on two recommendation scenarios, namely POI
and product recommendation, and on multiple real-world data sets.
Empirical results show that ReMF outperforms state-of-the-art ap-
proaches, scoring average improvements of 7.20% (MAE), 15.07%
(RMSE) and 9.86% (AUC).

2. RELATED WORK
Incorporating auxiliary features into recommendation, i.e. feature-

based recommendation [23, 24], has become a popular and effec-
tive approach to address the data sparsity and cold start problems.
A wide range of features has been explored, including user gender
and age [1, 6], item category [13] and content [20, 7].

Many feature-based recommendation methods consider only fea-
tures with a flat structure. For example, Singh et al. [25, 17] pro-
pose the collective matrix factorization (CMF) method, which fac-
torizes the user-item rating and user-feature matrices simultane-
ously, to improve the recommendation performance. Chen et al. [4]
devise a machine learning tookit, named SVDFeature. The basic
idea is that a user’s (an item’s) latent factor is influenced by those
of her (its) features. Rendle et al. [21, 22] design factorization ma-
chines (FM) that combines the advantages of Support Vector Ma-
chines with factorization model. However, all of these methods
mentioned above cannot cope with hierarchical feature structure.
Blending a feature hierarchy into these models requires converting
the hierarchy into a flat structure, thus losing the information about
feature relationships. To fully exploit a feature hierarchy, ReMF
combines the distinct influence of different features on user-item
interactions according to their structured relationships.

Some studies on taxonomy-aware recommendation incorporate
hierarchy in recommendation. For example, Ziegler et al. [33] and
Weng et al. [29] propose to model a user’s taxonomy preferences
as a flat vector, where each element corresponds to the user’s pref-
erence over a taxonomy feature. The user’s preference is modeled
as the frequency the user rates items characterized by the feature.
Albadvi et al. [2] propose a similar method, however it models
each feature as a preference vector, where the elements are feature
attributes (e.g. price, brand). All of these methods ignore feature
relationships. Koenigstein et al. [13] design a new matrix fac-

torization model for Yahoo! Music competition that incorporates
the feature hierarchy of track album and artist. They predict user
preferences by fusing item (e.g. track) latent factors with feature
(e.g. album, artist) vectors. This idea is similar to SVDFeature [4].
Though feature relationships are considered, they cannot fully ex-
ploit a feature hierarchy as they simply add feature latent factors to
item latent factors, without taking into account the dependent influ-
ence of hierarchically-organized features on user-item interactions.

Another related line of research focuses on integrating the struc-
ture within users/items in recommendation, e.g. social network [27,
18, 26], webpage network [16], tag network [32]. These methods
usually regularize latent factors of users/items that are linked in
the network, based on heuristic definitions of similarity between
users/items. For instance, Ma et al. [18] propose SoReg that regu-
larizes user latent factors based on cosine similarity of ratings be-
tween socially connected users. These methods consider the net-
work within users/items, though can be applied in the case of fea-
ture hierarchy, e.g. by constructing implicit connections between
users/items according to their feature relationships in the hierarchy.
However, an essential difference between these methods and ours is
that the influence of features on user-item interactions considered in
these methods is usually hard-coded with manually defined similar-
ity between users/items; on the contrary our proposed framework
can automatically learn the co-influence of different features from
the historical user-item interaction data. Recently Wang et al. [28]
propose to model the implicit hierarchical structure within users
and items based on user-item interactions. Our work differs from
this one, in that we consider leveraging explicit auxiliary features
to guide the learning of latent factors.

In summary, existing methods are incapable to model the co-
influence of hierarchically-organized features on user-item interac-
tions, thus restricting their applications in recommendation. In con-
trast, our framework can fully exploit an auxiliary feature hierarchy
through the learning of hierarchical feature influence.

3. DATA ANALYSIS
This section demonstrates the need for recommendation methods

able to account for the co-influence on user-item interactions of
hierarchically-organized features.

Inspired by the running example, we show on 8 different data
sets how: 1) users from the same country (named Country Visi-
tors) are more similar in terms of POI preferences compared with
users from different countries (named Foreign Visitors); and 2)
users from the same city (named City Visitors) are more similar
in terms of POI preferences compared to users from different cities
but the same country (named Domestic Visitors).

Data Sets We collect data of Foursquare check-in’s performed over
3 weeks in 4 European capital cities (Amsterdam, London, Paris,
Rome) and published on 2 social media platforms (Twitter, Insta-
gram). Table 1 shows the statistics about the 8 data sets. We con-
sider users’ residence city, country and continent as auxiliary infor-
mation about users, as well as a root feature residence location. We
use the method described in [3] to locate users’ residence locations.
For conciseness, we only analyze the co-influence of country and
city. Overall we consider 121 countries and 2,873 cities.

Analysis Metrics. We denote all countries as Con1, . . . , Cons;
each country Cons is the parent of all cities in it, i.e. Cons =
parent(Cit1, . . . , Citt). Each user ui from a city Citt and a
country Cons (Cons = parent(Citt)), has a set of visited POIs,
i.e. POI(ui) = {poii1, poii2, . . .}. Then we measure the sim-
ilarity between the users ui and uk using Jaccard similarity, i.e.
Jar(ui, uk) = |POI(ui) ∩ POI(uk)|/|POI(ui) ∪ POI(uk)|.
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Figure 2: Distribution of the ratio between similarity (a, b) among coun-
tries and across countries, or (c, d) among cities and across cities, through
the lens of (a, c) Instagram and (b, d) Twitter, including user visits to 4
European capital cities Amsterdam, Paris,Rome, and London (4 colors).

Table 1: Descriptive statistics of the data sets.

Amsterdam Rome Paris London

In
st

. #Users 4,318 4,081 11,345 12,719
#POIs 5,768 7,878 14,849 12,892
#Check-in’s 28,142 26,714 80,553 66,092
Sparsity 99.89% 99.92% 99.95% 99.96%

Tw
it.

#Users 1,599 1,369 6,521 9,305
#POIs 3,816 4,876 16,046 14,117
#Check-in’s 8,670 8,727 43,541 48,852
Sparsity 99.86% 99.87% 99.96% 99.96%

We define ui’s similarity with the other Country Visitors (City
Visitors), and with all Foreign Visitors (Domestic Visitors) as

Sim(F, u
w
i ) =

1

|F | − 1

∑
uk∈F,ui 6=uk

Jar(ui, uk),

Sim(F, u
a
i ) =

1

|parent(F )| − |F |
∑

uk∈parent(F ),uk /∈F

Jar(ui, uk),

respectively, where F is the country (or city) ui resides in, and
|F | is the number of users characterized by the feature F . For
instance, in the case of F = Cons, the similarity between ui

and the other Country Visitors, denoted by Sim(Cons, u
w
i ), is

the averaged similarity between ui and each of the other Coun-
try Visitors; the similarity between ui and Foreign Visitors, de-
noted by Sim(Cons, u

a
i ), is the averaged similarity between ui

and each of the Foreign Visitors. The similarity between ui and
the other City Visitors and Domestic Visitors can be similarly cal-
culated. Now we define the overall similarity within a country
(city) F , and across the country (city) and other countries (cities)
as Sim(Fw) = [Sim(F, uw

1 ), Sim(F, uw
2 ), . . .] and Sim(F a) =

[Sim(F, ua
1), Sim(F, ua

2), . . .], respectively. Then we compare
the overall similarity within a country (city), and that across the
country (city) and other countries (cities) by:

LogRatio(F ) = Log2
( 1

|F |
∑
ui∈F

Sim(F, uwi )

Sim(F, uai )

)
,

where LogRatio(F ) > 0 indicates that the elements in Sim(Fw)
is larger than that in Sim(F a) on average, and LogRatio(F )) <
0 otherwise. We test the significance of the difference between
Sim(Fw) and Sim(F a) with a Paired t-test.

Observation 1: Country Visitors are more similar with each other
in terms of POI preferences than with Foreign Visitors.

The distribution ofLogRatio(Con) for all countries is shown in
Figures 2(a-b) for Instagram and Twitter, respectively. More than
95% of the countries observed in both Instagram and Twitter have
LogRatio(Con) > 0. Paired t-test shows that 95.88% countries
in Instagram and 99.36% in Twitter have Sim(Conw) significantly
larger than Sim(Cona) (p-value < 0.01). We thus conclude that
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Figure 3: Ratio between similarity of users within a country and across
the country and other countries, for countries with more than 100 cities
observed through the lens of Instagram and Twitter.

Country Visitors are more similar with each other in terms of POI
preferences than with Foreign Visitors.

Figures 3(a-b) show theLogRatio(Con) for countries with more
than 100 cities observed in the two platforms. We can see that users
from different countries have different similarities when visiting
the same city; and that the similarity of users from the same coun-
try varies across visited cities. These observations highlight the
need for recommendation methods that can account for the vari-
ability caused by user residence country as well as visiting cities.
Interestingly, all countries with LogRatio(Con) < 0 in both Fig-
ures 3(a,b) are the ones whose capital cities are visited, indicating
that in visiting the capital city of their own countries, Country Visi-
tors are less similar than Foreign Visitors. We find that this is due to
that Country Visitors are mostly commuters in visiting their capital
cities, i.e. they go to work places in the capital cities.

Observation 2: City Visitors are more similar with each other in
terms of POI preferences than with Domestic Visitors.

The distribution of LogRatio(Cit) for all cities in all countries
is shown in Figures 2(c-d) for Instagram and Twitter. We can ob-
serve that all cities have LogRatio(Cit) greater than 0; 88.44%
of them in Instagram and 88.15% in Twitter have Sim(Citw) sig-
nificantly larger than Sim(Cita) (p-value < 0.01). We therefore
conclude that the similarity within City Visitors is higher than that
with Domestic Visitors. Comparing the distribution of cities with
that of countries, all cities have LogRatio(Con) > 0 while there
are some countries withLogRatio(Con) < 0 (those whose capital
cities are visited), indicating that users from the same city are more
similar than users from the same country. Moreover, we find that
generally cities have larger values of LogRatio than countries. For
instance the mean values of the distribution of Amsterdam in Fig-
ures 2(a,c) are 4.09 and 5.07, respectively. This observation hints
that cities generally have larger influence than countries on their
residents’ preferences.

4. RECURSIVE REGULARIZATION FOR
MODELING FEATURE CO-INFLUENCE

We adopt the regularization technique to model the influence of
auxiliary features. To do so, we have to consider feature relation-
ships, and further allow for the learning of feature influence from
historical user-item interaction data. For this we introduce a novel
regularization method, named recursive regularization, that models
the co-influence of features by recursively weighting each feature
influence, traversing from root to leaves in the feature hierarchy.

4.1 Preliminaries
We first introduce the notations. Let U = {u1, u2, . . . , um} be

the set of m users, and V = {v1, v2, . . . , vn} be the set of n items.
Given a user-item interaction matrix R ∈ Rm×n, Rij is a positive
number denoting the rating given by ui to vj . O ∈ Rm×n denotes
the indicator matrix, where Oij = 1 indicates that ui rates vj , and
Oij = 0 otherwise. F = {F1, F2, . . . , Ft} is the set of features,
each of which describes at least one user in U .



Table 2: Notations.

Notation Explanation

U ,V user, item set
ui/uk , vj the ith/kth user in U , and jth item in V
Rij rating given by user ui to item vj
R̂ij estimated rating for user ui to item vj
O indicator matrix indicating missing entries in R
Ui, Vj latent factors of user ui and item vj
F hierarchically-organized feature set
F feature in the hierarchy
Dis(F ) regularization induced by isolated feature F
Fu(F ) feature unit with parent node F
I′(F ) regularization by isolated feature unit Fu(F )
g, s weighting parameters in propagating feature influence
I(F ) regularization by feature unit Fu(F ) in hierarchy
I(F) regularization by feature hierarchy F
Cik regularization coefficient between Ui and Uk

α impact of recursive regularization
λ regularizaton coefficient to avoid over-fitting
J objective function of ReMF framework

The features are organized hierarchically in a tree structure, where
each node represents a feature in F . The edge between a parent
node Fp ∈ F and a child node Fc ∈ F represents a directed affil-
iation relationship, i.e. Fc belongs to Fp. Figure 4a shows an ex-
ample containing three leaf features F1, F2, F3, i.e. features with
no children. F1, F2 are children of the internal feature F4. F3 and
F4 are children of the root feature F5. For simplicity, we assume
that each user is explicitly associated with at most one leaf feature
in F . Table 2 summarizes all the notations throughout this paper.

Our method is built on matrix factorization (MF) [15], which as-
sumes the existence of latent structures in the user-item interaction
matrix. By uncovering latent factors of users and items, it approx-
imates the observed ratings and estimates the unobserved ratings.
MF solves the following optimization problem:

min
U,V

1

2

∑
i,j

Oij(Rij −UiV
T
j )2 +

λ

2
(‖U‖2F + ‖V‖2F ), (1)

where U ∈ Rm×d and V ∈ Rn×d are the latent factors of users
and items, respectively. d is the dimension of latent factors. λ is
the regularization coefficient to avoid over-fitting. The unobserved
rating for user ui to item vj can be estimated by the inner product of
the corresponding user and item latent factors, i.e. R̂ij = UT

i Vj .

4.2 Modeling Influence of Feature Hierarchy
on User-item Interactions

Step by step, we model the influence from a single feature to the
combinations of features and finally the entire feature hierarchy.

Influence of an Isolated Feature. To start, we first define the reg-
ularization by an isolated feature Fp in the hierarchy as:

Dis(Fp) =
∑

ui,uk∈Fp,i<k

‖Ui −Uk‖2F , (2)

where ‖Ui − Uk‖2F is the squared Frobenius norm distance be-
tween the latent factors of ui and uk characterized by feature Fp:
Fp poses regularization on the cumulation of the pairwise distance
between users associated with it. Thus,Dis(Fp) can be considered
as the influence of the isolated feature Fp on user-item interactions
by regularizing user latent factors. The definition here only con-
siders the influence of an isolated feature, while the co-influence
of the feature hierarchy contributed by the feature, i.e. influence of
the feature in the hierarchy, is different from – but based on – the
influence of the isolated feature, which will be illustrated later.

Our method models feature influence by regularizing user latent
factors, and can be straightforward transferred to modeling the in-
fluence by regularizing item latent factors, or both of them.

Influence of an Isolated Feature Unit. Given the above definition,
we now model the influence of an isolated combination of features,
on learning user latent factors, by introducing the most important
relationship among features in a hierarchy, i.e. parent-child rela-
tionship, based on which other relationships among features in the
hierarchy such as siblings, ancestors can be derived. We first define
the feature unit, i.e. Fu(Fp), as the combination of a single parent
node Fp and its children nodes, namely:

Fu(Fp) = {Fp} ∪ {Fc|∀Fc ∈ children(Fp)}.

Two examples of feature units Fu(F5) and Fu(F4) are shown in
the red dash boxes in Figure 4a.

Then we consider the influence of an isolated feature unit on
learning user latent factors by regularization. For each isolated fea-
ture unit Fu(Fp), we denote its influence as I′(Fp), and assign it
two parameters gp, sp, with the constraint gp+sp = 1. Parameters
gp and sp are used to distribute the influence of the feature unit to
two parts. One is given by the parent node, weighted by gp, and the
other is given by the children nodes, weighted by sp. The influence
of the isolated feature unit, i.e. I′(Fp), is then defined as:

I′(Fp) = gpDis(Fp) + sp(
∑

∀Fc∈children(Fp)

Dis(Fc)).

For example, the influence of the isolated feature unit Fu(F5)
in Figure 4a, i.e. I′(F5), is determined by both the influence of
the parent node F5, i.e. Dis(F5), weighted by g5, and the influ-
ence of its children nodes, i.e. Dis(F3) andDis(F4), weighted by
s5. The overall influence of this isolated feature unit is: I′(F5) =
g5Dis(F5) + s5(Dis(F3) + Dis(F4)). Compared with the in-
fluence of the isolated feature F5, the influence of feature F5 in
Fu(F5) is different, in that Dis(F5) is weighted by g5.

Influence of an Entire Feature Hierarchy. Based on the defini-
tion of the influence of an isolated feature unit, we now proceed
to model the influence of feature unit in the hierarchy, thus to for-
mally derive the overall influence of an entire feature hierarchy on
user latent factors. Note that the influence of a feature unit in the
hierarchy is different from – but based on – the influence of the
isolated feature unit, and can be achieved by recursively defining
the regularization of the feature unit in the hierarchy, given by:

DEFINITION 1 (RECURSIVE REGULARIZATION).

I(Fp) =



gpDis(Fp) +sp(
∑

∀Fc∈children(Fp)

I(Fc)),

if Fp is an internal feature;

Dis(Fp), if Fp is a leaf feature and |Fp| > 1;

0, otherwise,

where |Fp| is the number of users characterized by feature Fp.

From the above definition, we can see the difference between the
influence of a feature unit in the hierarchy I(Fp) and the influence
of an isolated feature unit I′(Fp), that is, I(Fp) is recursively de-
fined on I(Fc). Put another way, the influence of a child feature
is included in the influence of its parent feature. Hence, the influ-
ence of an entire feature hierarchy, denoted by I(F), is equivalent
to that of the root feature, as it recursively includes the influence of
all features in the hierarchy. As an example, Equation 3 shows the
influence of the feature hierarchy in Figure 4a.



F1= {u1, u2}

F3= {u4, u5}

F2= {u3}

F5= {u1, u2, u3, u4, u5}
Fu(F5)

Fu(F4) F4= {u1, u2, u3}

u1 u2 u3 u4 u5

(a) Feature hierarchy
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-
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1

g5+s5g4 g5+s5g4 g5 g5
u4 g5 g5 g5 1

1g5 g5 g5u5

u1 u2 u3 u4 u5

(b) Regularization coefficients
Figure 4: (a) illustrates a feature hierarchy, where features with children
(i.e. F5, F4) are called internal features. Particularly, F5 is also named root
feature, whereas features without children are called leaf features. Dash and
solid lines respectively represent the user-feature (i.e. a user is characterized
by a feature) and feature-feature (i.e. parent-child) relationships. Features
in a red dash box comprises a feature unit. (b) shows the corresponding
regularization coefficients of the corresponding example.

I(F) = I(F5)

=g5Dis(F5) + s5(I(F4) + I(F3))

=g5Dis(F5) + s5(g4Dis(F4) + s4(I(F1) + I(F2)) +Dis(F3))

=g5Dis(F5) + s5(g4Dis(F4) + s4Dis(F1) +Dis(F3)). (3)

The deduction of recursive regularization of a feature hierarchy
is shown in Algorithm 1, where the co-influence of features is mod-
eled as a regularization function parameterized by the weights of
each feature in the hierarchy. These weights characterize the influ-
ence of distinct features, and can be further learnt from historical
user-item interaction data, as we introduce in the next section.

Remark. By recursively weighting and combining feature influ-
ence over a hierarchy from the root feature to the leaves, recursive
regularization can model the influence of an arbitrarily deep feature
hierarchy that can be either balanced or imbalanced.

5. REMF: A RECOMMENDATION FRAME-
WORK INTEGRATED WITH RECURSIVE
REGULARIZATION

We first introduce a novel recommendation framework ReMF,
that integrates the recursive regularization into the MF model to
exploit auxiliary feature hierarchy. Then an optimization method
and the complexity analysis for ReMF are presented.

5.1 The ReMF Framework
By incorporating recursive regularization into the MF, the ReMF

framework is defined by:

DEFINITION 2 (THE REMF FRAMEWORK).

min
U,V,

gp,sp∀Fp∈F

J =
1

2

∑
i,j

Oij(Rij−UiV
T
j )

2
+
α

2
I(F)+

λ

2
(‖U‖2F +‖V‖2F )

where α is a regularization parameter that controls the impact of
recursive regularization, i.e. I(F).

Thanks to recursive regularization, ReMF can model the co-influence
of features in the hierarchy to learn user latent factors.

It also characterizes the distinct influence of each feature, thus
helping with the interpretation of the effect of each feature in the
hierarchy on recommendation, illustrated as follows.

Considering the example of Figure 4, based on Equations 2 and
3, the feature hierarchy influence I(F) can be rewritten as:

(g5 + s5g4 + s5s4)‖U1 −U2‖2F + (g5 + s5g4)‖U1 −U3‖2F + . . . ,

where the strength of the regularization between u1, u2’s latent fac-
tors is (g5 + s5g4 + s5s4), and that of u1, u3’s latent factors is

Algorithm 1: Recursive Regularization Deduction
Input: feature hierarchy F , gp, sp∀Fp ∈ F

1 foreach Fp ∈ F do
2 I(Fp)← 0;

3 layer← #layers of F ;
4 for l = 0; l ≤ layer; l ++ do
5 foreach feature Fp at layer l of F do
6 if Fp is a leaf feature (l = 0) and |Fp| > 1 then
7 I(Fp)←Dis(Fp);

8 else if Fp is an internal feature (l 6= 0) then
9 I(Fp)←

gpDis(Fp) + sp(
∑
∀Fc∈children(Fp)

I(Fc));

10 I(F)← I(Froot);

(g5 + s5g4). In fact, the strength of regularization is the combi-
nation of influence of different features. For simplicity, we assume
g = s = 0.5 for each internal feature. Therefore, the strength
of regularization between u1, u2’s latent factors is (g5 + s5g4 +
s5s4) = 1, from which we could see that the feature F5 has an
influence of g5 = 0.5, while its children features F4 and F1 have
influence of s5g4 = 0.25 and s5s4 = 0.25, respectively. Then, for
u1, u3, the strength of regularization between their latent factors is
(g5 + s5g4) = 0.75, where the features F5, F4 have influence of
g5 = 0.5, s5g4 = 0.25, respectively. The distinct influence of fea-
tures on learning user latent factors can therefore be characterized
by certain functions of the weights (g, s).

To formally derive feature influence on an arbitrary pair of users,
we define the regularization coefficient Cik to represent the strength
of regularization between ui and uk, where a greater value of Cik

indicates a higher correlation between the two users. Hence, I(F)
can be reformulated as:

I(F) =
∑

ui,uk∈U,i<k

Cik‖Ui −Uk‖2F ,

We next introduce two theorems for deriving Cik, which is the
combination of the influence by different features on ui and uk.

THEOREM 1. The regularization coefficient for any pair of users
ui, uk (i.e. Cik) characterized by the same leaf feature is 1:

groot + sroot(gc1 + sc1 (gc2 + sc2 (...(gcl + scl )))) = 1,

where the list {Froot, Fc1 , Fc2 , . . . , Fcl} is the set of the common
features of ui and uk, ordered in a sequence from the root feature
Froot to the leaf feature Fcl .

Proof. This is straightforward to prove, due to the constraint g+s =
1. Considering the example {u1, u2} in Figure 4, the sum of the
relevant regularization terms, i.e. g5Dis(F5), s5g4Dis(F4) and
s5s4Dis(F1), in Equation 3 is:

(g5 + s5(g4 + s4))‖U1 −U2‖2F
=(g5 + s5)‖U1 −U2‖2F = ‖U1 −U2‖2F .

THEOREM 2. For any pair of users ui, uk not characterized by
a common leaf feature, the regularization coefficient (i.e. Cik) is:

groot + sroot(gc1 + sc1 (gc2 + sc2 (...(gcl )))),

where the list {Froot, Fc1 , Fc2 , . . . , Fcl} is the set of the common
features of ui and uk, ordered from the root feature Froot to the
deepest common feature Fcl .

Proof. All possible features that can influence the regularization
coefficient of ui, uk are their deepest common feature, and the par-
ents and ancestors of the deepest common feature.

According to the above theorems, the value of regularization co-
efficient always falls into the range of [0, 1], with 1 indicating the



Algorithm 2: ReMF Model Learning
Input: rating matrix R , feature hierarchy F , d, γ, λ, α, iter

1 Initialize U,V, gp, sp, and ∀Fp ∈ F ;
2 for t = 1; t ≤ iter; t++ do
3 foreach Ui ∈ U, Vj ∈ V do
4 U

(t)
i ← U

(t−1)
i − γ ∂J

∂Ui
;

5 V
(t)
j ← V

(t−1)
j − γ ∂J

∂Vj
;

6 foreach Internal feature in the hierarchy do
7 g

(t)
p ← g

(t−1)
p − γ ∂J

∂gp
;

8 s
(t)
p ← s

(t−1)
p − γ ∂J

∂sp
;

9 Calculate J by Algorithm 1 and Definition 2;
10 if J has converged then
11 break;

full regularization and 0 indicating no regularization. As an exam-
ple, Figure 4b shows the regularization coefficients of the feature
hierarchy in Figure 4a.

These regularization coefficients naturally connect ReMF to net-
work based recommendation methods, which also consider pair-
wise regularization on users. There are however two essential dif-
ferences: 1) network-based regularization coefficients are usually
hard-coded, while our regularization coefficients are modeled from
the feature hierarchy structure, and expressed by the function of
weights (g, s). And, 2) (g, s), which parametrizes the distinct fea-
ture influence while being automatically learnt from the historical
user-item interaction data, as we will address in the next subsection.

5.2 The Optimization Method for ReMF
We adopt the stochastic gradient descent scheme [14, 15] to op-

timize our objective function.
Updating U,V. The gradients of Ui,Vj are given by:
∂J
∂Ui

=−
∑
j

Oij(Rij −UiV
T
j )Vj + λUi + α

∑
ui,uk∈U,i<k

Cik(Ui −Uk),

∂J
∂Vj

=−
∑
i

Oij(Rij −UiV
T
j )Ui + λVj .

Updating (g, s). (g, s) can be predefined heuristically, or hand-
crafted by domain experts who can fairly quantify the influence of
different features. Instead, we provide an effective data-driven so-
lution that automatically learns (g, s) based on the historical user-
item interaction data.

We only need to estimate (g, s) for internal features in the hier-
archy, since the leaf features do not have children. For an internal
feature Fp, the gradients of gp, sp are equivalent to the multipliers
of gp, sp in I(F). Thus, we have:

∂J
∂gp

=

{
Dis(Fp), if Fp is root,∏

∀a:Fa∈ancestors(Fp) saDis(Fp), otherwise;

∂J
∂sp

=


∑

∀Fc∈children(Fp) I(Fc), if Fp is root,∏
∀a:Fa∈ancestors(Fp) sa(

∑
∀Fc∈children(Fp) I(Fc)),

otherwise.

According to the constraint gp+sp = 1, we can update gp (or sp)
using the gradient and the other by sp = 1− gp (or gp = 1− sp).
The detailed learning process is shown in Algorithm 2.

Complexity Analysis The computational time is mainly taken by
evaluating the objective function J and updating the related vari-
ables. The time to compute the J is O(d|R| + dm2), where
|R| is the number of non-zero observations in the rating matrix
R. For all gradients ∂J

∂Ui
, ∂J
∂Vj

, ∂J
∂gp

, ∂J
∂sp

, the computational time

areO(d|R|+ dm2),O(d|R|),O
(
d
∑layer−1

l=0
ml(ml−1)nl

2

)
and

O(|sp|), respectively. Wherein ml denotes the average number of

users in each node at layer l, nl denotes the number of nodes at
layer l, and |sp| (� |R|) denotes the number of internal nodes.
Particularly, we leverage sp = (1 − gp) to update sp. The overall
computational complexity of Algorithm 2 is (#iteration ∗ O(d|R|
+dq)), where q = max(

∑layer−1
l=0

ml(ml−1)nl
2

,m2). In real-
world applicationsml is typically small (e.g. power-law distributed),
thus making ReMF scalable to large data set.

6. EXPERIMENTS AND RESULTS
We assess the performance of ReMF with a comparison with

the state-of-the-art, feature-based, hierarchy-based recommenda-
tion methods. The comparison is performed over 1) the data sets
introduced in Section 3, for POI recommendation with user feature
hierarchy; and 2) a data set from the Amazon Web store [19], for
product recommendation with item feature hierarchy.

6.1 Experimental Setup
Evaluation. We adopt the standard 5-fold cross-validation, and the
following 3 metrics for evaluation: Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) [13, 22] to measure the error
of predicted ratings; and Area Under the ROC Curve (AUC) [9,
31] to measure the quality of predicted ranking of items (ranked
according to the predicted ratings). The smaller MAE and RMSE,
and the larger AUC, the better the recommendation performance.

Comparison Methods. The following methods are compared: (1)
MF [15]: matrix factorization method; (2) CMF [25]: collec-
tive MF; (3) TaxMF [13]: taxonomy-based MF; (4) SoReg [18]:
network-based recommendation method incorporating social rela-
tions; (5) FM [22]: factorization machine; (6) HieFM: factoriza-
tion machine with hierarchy information.

HieFM is a variation of FM that considers each features path
in the hierarchy (from root to leaf nodes) as an additional feature
in the design vectors of FM. Similar to FM, CMF and TaxMF can
also incorporate path-based features. As FM outperforms CMF and
TaxMF (see Section 6.3), we limit our comparison with previous
methods exploiting path-based features to HieFM.

Parameter Settings. We empirically set optimal parameters for
each method using a grid search in {0.0001, 0.001, 0.01, 0.05} for
both λ (including 1-way and 2-way regularization of FM) and the
learning rate γ; α = 0.5 for CMF; β = 0.01 for SoReg. For
fair comparison, we set d = 10 (the dimension of latent factors)
for all the methods, and adopt all features (i.e. continent, country,
and city) as input in TaxMF, CMF, FM and HieFM. HieFM has
path-based features as additional hierarchy information. In SoReg,
we model the social relations among users by counting the num-
ber of common features, under the assumption that the commonal-
ity establishes implicit social relationships based on the geo-social
correlation phenomenon [8]. Without loss of generality, we adopt
f(x) = 1/(1 + x−1) to map each #check-in Rij ∈ R in POI data
sets into the interval (0, 1) [7].

6.2 Results of ReMF
We analyze the influence of recursive regularization on ReMF

performance, and discuss how the weighting parameters g, s can
help the interpretation of recommendation results.

The Impact of α. In ReMF, α controls the strength of recur-
sive regularization of feature hierarchy. We apply a grid search in
{10−5, 10−4, 10−3, 10−2, 10−1, 100} to investigate the impact of
α on recommendation performance. Results are shown in Figure 5.
As α varies from small to large, the performance first increases then
decreases, with the maximum reached at the range [10−2, 10−1].



Table 3: Performance of the considered recommendation methods on the testing views “All” and “Cold start” of POI data sets. The best performance for each
city is boldfaced; the runner up is labelled with "*". The improvements by the best method on all data sets are statistically significant (p-value < 0.01).

View Data Set MAE RMSE
MF CMF TaxMF SoReg FM HieFM ReMF MF CMF TaxMF SoReg FM HieFM ReMF

A
ll

In
st

. Amsterdam 0.1957 0.1564 0.1426 0.1038 0.0876 0.0822* 0.0707 0.3134 0.1940 0.1934 0.1455 0.1373 0.1352* 0.1005
Paris 0.1539 0.1550 0.1416 0.1208 0.0790* 0.0830 0.0772 0.2675 0.1921 0.1849 0.1825 0.1293 0.1184* 0.1111
Rome 0.2549 0.1584 0.1474 0.1355 0.0912 0.0885* 0.0855 0.3860 0.1967 0.1859 0.1912 0.1403 0.1389* 0.1212
London 0.1799 0.1559 0.1369 0.1250 0.0834* 0.0851 0.0774 0.2964 0.1934 0.1762 0.1840 0.1347* 0.1396 0.1124

Tw
it.

Amsterdam 0.2264 0.1606 0.1345 0.1229 0.0989 0.0942* 0.0844 0.3473 0.1996 0.1717 0.1669 0.1540 0.1454* 0.1164
Paris 0.2014 0.1714 0.1552 0.1266 0.0956 0.0935* 0.0894 0.3207 0.2136 0.2038 0.1687 0.1408 0.1387* 0.1245
Rome 0.2681 0.1713 0.1591 0.1345 0.1023 0.0996* 0.0977 0.3902 0.2132 0.2030 0.1831 0.1534 0.1469* 0.1317
London 0.2176 0.1659 0.1545 0.1122 0.0931 0.0898* 0.0772 0.3075 0.2065 0.1959 0.1540 0.1407 0.1375* 0.1115

C
ol

d
st

ar
t

In
st

. Amsterdam 0.2938 0.1552 0.1457 0.1051 0.0924 0.0885* 0.0712 0.3877 0.1926 0.1904 0.1479 0.1443 0.1391* 0.1040
Paris 0.1939 0.1541 0.1476 0.1173 0.0849 0.0848* 0.0799 0.3110 0.1907 0.1896 0.1713 0.1374 0.1287* 0.1183
Rome 0.3840 0.1614 0.1518 0.1356 0.0952 0.0938* 0.0808 0.4868 0.1990 0.1925 0.1845 0.1455* 0.1506 0.1250
London 0.3032 0.1544 0.1415 0.1221 0.0893* 0.0901 0.0791 0.3978 0.1917 0.1819 0.1685 0.1426 0.1425* 0.1161

Tw
it.

Amsterdam 0.3261 0.1604 0.1426 0.1189 0.1006 0.0966* 0.0849 0.4003 0.1982 0.1832 0.1609 0.1558 0.1514* 0.1172
Paris 0.2439 0.1706 0.1640 0.1271 0.1012 0.0945* 0.0873 0.3764 0.2123 0.2120 0.1713 0.1485* 0.1502 0.1226
Rome 0.3922 0.1718 0.1681 0.1343 0.1073 0.1070* 0.0988 0.4951 0.2133 0.2136 0.1833 0.1559 0.1517* 0.1359
London 0.3301 0.1642 0.1587 0.1128 0.0967 0.0924* 0.0756 0.3976 0.2043 0.2013 0.1563 0.1475 0.1436* 0.1093
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Figure 5: The effects of α on the performance of ReMF on Instagram and Twitter measured by MAE and RMSE.

The performance variations across data sets suggest the need for
data set-specific settings; the similarity in performance variation
across α values shows the robustness of ReMF.

Interpretation from (g, s). We examine (g, s) for the internal fea-
tures, i.e. continents and countries, learnt from data. Table 4 shows
the list of continents and countries ranked according to their g val-
ues. Recall that for a continent (country), g > s means that the
continent (country) has a stronger effect on user preferences than
and its children features, i.e. countries (cities).

In general the continents have relatively smaller effects on user
preferences (with g values all below 0.2), suggesting that continents
have weaker effects than their countries. In addition, we observe a
big variance in the g values of countries, indicating that different
countries have different influence on user preferences. The high
variance of countries’ g values proves the necessity of parameter-
izing g, s in recommendation. We then compare the influence of
countries and cities on their residents’ preferences. As cities of a
country and the country comprise a feature unit, the influence of a
city can be measured by s = 1− g, where g is the influence of the
country. We can see from Table 4 that most countries have g < 0.5
(only 3 countries have g > 0.5), i.e. s > 0.5, indicating that the
influence of cities in most countries have more influence on their
residents’ preferences than the countries themselves.

Table 4: Values of g for continents and top/bottom countries in the dataset.

Continents Top countries Bottom countries
Name g Name g Name g

Europe 0.1837 Portugal 0.6915 Chile 0.0211
America 0.1656 Monaco 0.5813 Thailand 0.0175
Asia 0.1534 Serbia 0.5130 Spain 0.0100
Africa 0.0375 Poland 0.4453 Indonesia 0.0081
Oceania 0.0139 Hungary 0.4141 Belgium 0.0064

6.3 Comparative Results
Rating Performance. Two views are created for each data set: 1)
the “All” view includes all users; while 2) the “Cold start” view in-

dicates that only users with ≤ 5 ratings are involved in the test set.
Table 3 compares the performance of the considered recommen-
dation methods for all data sets. Unsurprisingly, the basic matrix
factorization model is consistently outperformed by feature-based
recommendation methods; this shows that, in the context of the tar-
geted evaluation scenario, the usage of auxiliary information about
users positively affects recommendation accuracy. In addition, FM
outperforms CMF, TaxMF and SoReg. This could be explained by
FM considering item-feature interactions, in addition to user-item
and user-feature interactions.

HieMF in general outperforms FM, suggesting that information
about feature relationships (paths) can help predicting user pref-
erences. ReMF consistently outperforms the methods in the com-
parison pool, with an average performance gain (w.r.t. the second
best method) of 7.20% (MAE) and 15.07% (RMSE). Paired t-test
shows that the improvements of ReMF on all data sets are signif-
icant (p-value < 0.01). Such big improvements clearly show the
effectiveness of recursive regularization, and the advantage derived
from the full inclusion of information about feature relationships.

Table 3 (data view “Cold start”) reports the results with cold start
users. As in the previous case, ReMF achieves the best performance
compared with other methods, and significantly outperforms the
second best methods in all data sets (p-value < 0.01) by 12.02%
and 17.53% w.r.t. MAE and RMSE respectively. The relatively
larger improvements on the testing view “Cold start” than on “All”
indicates that ReMF has higher capability in coping with the cold
start problem compared to the state-of-the-art methods.

Ranking Performance. We further evaluate the ranking quality of
items recommended by ReMF and other methods in the comparison
pool. Results are shown in Figures 6(a-b) for data sets from Insta-
gram and Twitter, respectively. ReMF significantly outperforms the
second best method (p-value < 0.01) on all data sets by 9.86%
on average, reaching an averaged AUC of 0.8175 in Instagram and
0.7568 in Twitter. These observations show that the influence of
feature hierarchy modeled by recursive regularization can effec-
tively complement user-item interaction data in ranking prediction.
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Figure 6: AUC of ReMF and the comparative methods on POI data sets of
four cities, through the lens of (a) Instagram and (b) Twitter.

Generalizability. We test the performance of ReMF on another
task, i.e. product recommendation, using the data from Amazon
web store [19]. Different from the POI data sets, here we consider
the feature hierarchy of items. We focus on the product category
of “Clothing, Shoes & Jewelry”, having maximal depth of 7, and
an unbalanced feature hierarchy. An example path in the hierarchy
from the root feature to the leaf is “Clothing, Shoes & Jewelry→
Men → Accessories → Wallets”. We uniformly sample the raw
data set to include 100, 810 ratings performed by 34, 817 users to
45, 716 items. Table 5 compares the performance of ReMF and the
other methods in the comparison pool, measured by RMSE, which
is more indicative of large errors than MAE. As in the previous
setting, ReMF significantly outperforms the second best method (p-
value < 0.01), i.e. HieFM, by 5.46% on the testing view of “All”
and 7.42% on “Cold start”. These results show that ReMF can
be effective in multiple recommendation tasks, and with different
topologies of features hierarchy.

Table 5: Performance (RMSE) on the testing views “All” and “Cold start”
of Amazon data set. The best performance is boldfaced; the runner up is
labelled with “*”. All improvements by the best method are statistically
significant (p-value < 0.01).

CMF TaxMF SoReg FM HieFM ReMF
All 1.6356 1.3921 1.3912 1.3899 1.3847* 1.3091

Cold start 1.6386 1.4057 1.4054 1.4074 1.4033* 1.3242

7. CONCLUSIONS
Hierarchies are a common way to capture relationships between

features. Yet, the value of this additional information is not fully
exploited by state-of-the-art feature-based recommendation meth-
ods. This paper proposes a novel regularization method named re-
cursive regularization for modeling the co-influence of features in
the hierarchy on user-item interactions. Based on this, a new rec-
ommendation framework ReMF is proposed to learn hierarchical
feature influence from historical user-item interaction data. Ex-
perimental validation on real-word data sets shows that ReMF can
largely outperform state-of-the-art methods, proving the value re-
siding in the exploitation of feature hierarchies for better learning
user and item latent factors.

We stress how recursive regularization does not only apply to
tree-like data structures (hierarchy), but also to a forest of trees:
adding a root feature transforms a set of trees to one tree. General-
ization to graphs is less trivial, and therefore left to future work.
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