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ABSTRACT
Unknown unknowns represent a major challenge in reliable image

recognition. Existing methods mainly focus on unknown unknowns

identification, leveraging human intelligence to gather images that

are potentially difficult for the machine. To drive a deeper under-

standing of unknown unknowns and more effective identification

and treatment, this paper focuses on unknown unknowns charac-

terization. We introduce a human-in-the-loop, semantic analysis

framework for characterizing unknown unknowns at scale. We

engage humans in two tasks that specify what a machine should
know and describe what it really knows, respectively, both at the

conceptual level, supported by information extraction and machine

learning interpretability methods. Data partitioning and sampling

techniques are employed to scale out human contributions in han-

dling large data. Through extensive experimentation on scene recog-

nition tasks, we show that our approach provides a rich, descriptive

characterization of unknown unknowns and allows for more effec-

tive and cost-efficient detection than the state of the art.
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1 INTRODUCTION
Machine learned image recognition models are rapidly deployed

in many high-stakes contexts [35]. While largely accelerating and

aiding the decision-making process, such models suffer from a
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Figure 1: An unknown unknown example: Kitchen image classified
as Conference Room. The model misses relevant concepts microwave,
oven, counter and sink specified in (a) what the model should know,
while picking up irrelevant concepts chair and ceiling shown in (b)
what the model really knows (based on the saliency map [46]).

severe issue of reliability—they can just as easily fail and generate

errors that can eventually lead to drastic consequences [41]. Being

able to understand and detect such errors has become a key demand

for both, model developers to debug and improve the model [4], and

for the users to decide when to trust the model output [11, 12, 50].

Among image recognition errors, a specific type known as un-
known unknowns is of particular interest [5, 29]. Unknown un-

knowns refer to the images for which a model is highly confident

about its predictions but is wrong. Identifying such errors is chal-

lenging due to the overconfidence of themodel. Recent efforts resort

to human-in-the-loop approaches that ask humans to gather data in-

stances that are potentially difficult for a model to handle [5, 27, 29].

An important finding reveals that unknown unknowns often come

with internal consistency, making them particularly suitable to

be described by natural language building on top of conceptual

knowledge [5, 17, 29]. We bring to fore the notion of characterizing
unknown unknowns to allow us to gain a deeper understanding of

when the model fails. This lies in contrast to previous work that

has focused largely on identifying unknown unknowns.

For effective characterization of unknown unknowns, two types

of knowledge are needed: knowledge of what a model has learned,
that we henceforth refer to as REALLY-KNOWS, and what a model

should have learned, referred to as SHOULD-KNOW. Recent work on

human-in-the-loop machine learning interpretability [6] has shown

the important role of humans as computational agents to describe

REALLY-KNOWS, by annotating salient image areas in image recog-

nition with semantic concepts. In this paper, we advocate another

view to the role of humans as contributors who can shed light on

SHOULD-KNOW. We envision that eliciting SHOULD-KNOW from the

perspective of human understanding of a given task, can lead to a

complete and usable characterization of unknown unknowns. Con-

sider the example of indoor scene recognition in Figure 1, where

the model incorrectly classifies a Kitchen image as a Conference

https://doi.org/10.1145/3485447.3512040
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Room: knowing that the model fails by focusing on the chair and
ceiling only tells half the story; knowing that the model should

have focused on themicrowave, oven, counter, for instance, presents
a deeper understanding that would allow further identification of

similar errors which the model produces by missing such concepts.

With this in mind, we introduce Scalpel-HS, a human-in-the-

loop, semantic analysis framework for unknown unknowns charac-

terization in image recognition. Drawing inspiration from cognitive

psychology literature [16, 20, 30, 36], Scalpel-HS is designed with

two human computation tasks— for SHOULD-KNOW specification and

REALLY-KNOWS description—that both engage human contributors

to operate at the conceptual level. In the SHOULD-KNOW task, hu-

man contributors identify a set of objects (with attributes) and

relations that are relevant for a given image. In the REALLY-KNOWS
task human contributors annotate areas of an image, shown to be

relevant for model prediction, with semantic concepts (i.e., visual

objects, attributes, and relations). Leveraging the outcome from

both SHOULD-KNOW and REALLY-KNOWS tasks, model unknowns can

be characterized by comparing those concepts that a model should

have learned with what the model actually learned.

Scalpel-HS builds upon a computational pipeline to provide

input to the human computation tasks with minimized cognitive

load imposed to human contributors. For the SHOULD-KNOW task,

we leverage state-of-the-art information extraction techniques to

pre-identify objects and relations in the images, allowing human

contributors to primarily focus on adjudicating the relevance of con-

cepts to a given scene. This cognitively simplifies the task at hand,

in comparison to explicitly synthesizing relevant concepts [25],

and results in a more structured vocabulary. For the REALLY-KNOWS
task, we leveragemachine learning interpretability methods to high-

light important pixels of an image for model prediction [45, 46].

To minimize human effort, Scalpel-HS employs a semantic data

partitioning and sampling method that identifies representative

images for the human tasks. To do so, Scalpel-HS starts off by first

learning semantically-rich image representations.

We demonstrate the effectiveness, informativeness, and cost-

efficiency of Scalpel-HS on several state-of-the-art machine learn-

ing models for scene recognition [26, 55], a task that is considered

to be complex in image recognition for machines, as well as for

humans as it requires the understanding of context [31, 54]. We

show that Scalpel-HS provides informative, easy-to-understand

characterizations of unknown unknowns that significantly boost

the state of the art in unknown unknown detection by 31%, and is

able to detect 2x to 3x the sizes of unknown unknowns compared

to the number of annotated images.

In summary, we make the following key contributions:

• We introduce a human-in-the-loop framework that orchestrates

both automatic and human computation components for cost-

efficient characterization and identification of unknown unknowns;

• We present the design of human computation tasks for both

model should-know and actually-knows description at the con-

ceptual level, with a set of design choices made to account for

the cognitive load, and fault-tolerance of human work;

• We introduce computational methods for learning semantically

rich image representations and for image sampling by partition-

ing the semantic data space, for scaling out human contributions.

2 THE SCALPEL-HS FRAMEWORK
Figure 2 presents an overview of Scalpel-HS. Given an image set

and a trained image recognition model, it first 1a extracts the scene

graphs of the images and 1b the saliency maps for the model classi-

fication of the given images. It 2a learns the representation of the

images combining both the visual and semantic features and based

on that, 2b partitions the image set and sample representative im-

ages for the human tasks. The scene graphs and the saliency maps

of the sampled images are then respectively fed to the human tasks

published in a crowdsourcing platform, 3a the SHOULD-KNOW task,

and 3b the REALLY-KNOWS task, to generate descriptions of what a

model should know and really knows. Output of the two tasks are

then aggregated to obtain a characterization of the unknown un-

knowns, together with a set of corresponding unknown unknown

images through the 4 aggregation and detection component.

In the following, we describe the components in more detail.

1a SceneGraph Extraction.Understanding a natural scene image

usually requires reasoning about the relationship between objects

in the image. For example, in the recognition of rooms, a sink next

to an oven indicates a kitchen while a sink next to a mirror more

likely indicates a bathroom. To help humans specify the required

knowledge in scene recognition, i.e., SHOULD-KNOW, we extract scene
graphs. A scene graph is a structured representation of objects and

the relationships between them present in an image. It consists of a

set of relationships, each represented as [𝑜𝑖 , 𝑟𝑖 𝑗 , 𝑜 𝑗 ], where 𝑜𝑖 and 𝑜 𝑗
refer to two objects (image patches usually captured by bounding

boxes) in the image, and 𝑟𝑖 𝑗 represents the relation between two

objects. Given a scene image, we generate the visual scene graph

using state-of-the-art methods Neural Motifs [53].

1b SaliencyMap Extraction.Understanding machine behavior in

scene recognition is the machine learning interpretability problem.

The most extensively studied interpretability approach for image

classification is saliency, a local interpretability post-hoc method

that highlights the most important pixels of an image for model

decisions in what is called a saliency map [45]. We choose this

method to help humans describe what a model REALLY-KNOWS.
We opted for SmoothGrad [46], which is sensitive to the param-

eters of a model (thus catering for more accurate capturing of a

model behavior) while minimizing noisy results (i.e., highlighting

irrelevant pixels). Our framework is though agnostic to the em-

ployed local interpretability method. To minimize human effort,

we sample a subset of representative images for human annotation.

Data sampling is performed via a data partitioning method based

on a new type of image representation.

2a Representation Learning. Due to the complexity of the scene

recognition task, representative images should be diverse in terms of

both the semantic information contained and the visual appearance.

Existing methods generally rely on pre-trained models for visual

feature extraction only, which is suboptimal in our context. We

propose to fuse in also the semantic information and introduce a

self-supervised learning approach for learning semantically rich

image representations. We describe the details in Section 3.1.

2b Data Partitioning and Sampling. Prior work has shown that

unknown unknowns are caused by systematic biases in training

data, reside in certain partitions (i.e., blind spots) of the feature
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Figure 2: The Scalpel-HS framework. It takes as input an image set and a trained image recognition model; as output, it produces a characteri-
zation of unknown unknowns and identifies the corresponding unknown unknown images. To do so, it extracts the (1a) scene graph and (1b)
saliency map of model classification of a subset of images—sampled by (2a) representation learning and (2b) data partitioning—, feeds them to
the (3a) SHOULD-KNOW and (3b) REALLY-KNOWS human computation tasks published on a crowdsourcing platform, and (4) aggregates the output
for unknown unknowns characterization and detection of more corresponding unknown unknown images.

space [5, 29]. Following this, we propose a data partitioning method

for sampling, Semantic Space Partitioning (SSP), that identifies the
optimal subset of representative images in the semantic space. Our

method partitions the semantic space and selects candidate images

in such a way that (the weighted sum of) cosine distances from the

candidate data points to others in the same region are minimized. As

the result, semantically similar images will be grouped in partitions,

centered around the representative images. Those representative

images are then sampled for human annotations. We describe the

details of our SSP method in Section 3.2.

3a The SHOULD-KNOW Task. For a given set of valid objects and

relations pertaining to a scene, it is important to understand the

salience of each object and relation in identifying the scene in the

given image. For example, from a human perspective, a bed when

compared to a carpet can be deemed to be relatively more salient

in identifying the scene as a bedroom. In this task, human workers

identify the salient objects, their attributes, and the relations be-

tween objects for identifying a given scene in an image. We describe

details of the task design in Section 4.1.

3b The REALLY-KNOWS Task. The goal of the task is to find out

which objects in the scene influence the prediction of the machine

learning model, and whether this is congruent with the human

mental model. Human workers identify objects and relations found

by the machine, and rate their relevance in identifying the scene.

Details of the task are described in Section 4.2.

4 Aggregation & Detection. Results of the two human tasks

are aggregated to obtain a characterization of unknown unknowns.

Denoting the true class and wrongly predicted class as 𝑦 and 𝑦′,
respectively, the characterization is represented in the form of the

triple ⟨𝑦, (+)𝑐,𝑦′⟩ for False Positive (in terms of 𝑦′) and ⟨𝑦, (−)𝑐,𝑦′⟩
for False Negative (in terms of 𝑦). For example, ⟨Conference Room,
(+)sofa, Living Room⟩ indicates that the model wrongly classifies

a conference room image to be a living room because of the focus on

the spurious concept sofa; ⟨Kitchen, (−)oven, Conference Room⟩

indicates that the model wrongly classifies a kitchen image to be a

conference room by missing the concept of oven in the kitchen.

Apart from the characterization, this component detects more

unknown unknowns of the same characteristics utilizing the data

partitions: images in the same partition as the human annotated

(representative) one are likely to be unknown unknowns sharing

the same missing or spurious concepts. The component therefore,

identifies more images as unknown unknowns those on which the

model confidence is greater than a threshold.

3 IMAGE REPRESENTATION AND SAMPLING
This section describes our methods for semantically rich image

representation learning and semantic space partitioning.

3.1 Representation Learning
Our representation learning model comprises components for vi-

sual feature extraction, semantic feature extraction, multi-modality

fusion, and image representation generation. Together those com-

ponents make a representation learning model that can be trained

in an end-to-end fashion. We describe the details in the following.

Visual Feature Extraction. We use the pre-trained model Faster-

RCNN [38] to generate feature vectors for nodes and relationships

in the generated scene graph. For each object node 𝑜𝑖 in the scene

graph, a visual feature vectorV𝑜𝑖 is extracted from its corresponding

image region. For each relationship node 𝑟𝑖 𝑗 , its visual feature vector

V𝑟𝑖 𝑗 is extracted from the union region of 𝑜𝑖 and 𝑜 𝑗 on the image.

Semantic Feature Extraction. Each node, either object node or re-
lationship node, has a text description generated by the scene graph

generator. From such text description, we obtain the initial seman-

tic features using the pre-trained GloVe embeddings [34]. Those

embeddings are trainable parameters in our representation method.

We denote the semantic feature of the node and relationship as E𝑜𝑖
and E𝑟𝑖 𝑗 , respectively.
Multi-modality Fusion.We fuse the visual and semantic features

into a joint multi-modal representation. Inspired by [18], the visual
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feature vector and label feature vector are first concatenated, then

fused as follows:

Z𝑜𝑖 = tanh(W𝑇
1
V𝑜𝑖 +W𝑇

2
E𝑜𝑖 ) (1)

Z𝑟𝑖 𝑗 = tanh(W𝑇
1
V𝑟𝑖 𝑗 +W𝑇

2
E𝑟𝑖 𝑗 ) (2)

where Z𝑜𝑖 and Z𝑟𝑖 𝑗 are joint feature vectors for object and relation

nodes, respectively. W1 andW2 are the shared parameters.

Image Representation Generation. To obtain a single vector

representation of an image, we combine the visual-semantic fea-

tures of all the objects and relationships. Considering the fact that

those objects and relations together make a graph, we employ a

multi-layer graph convolutional networks (GCN) [24] to capture

the graph structure while combining the object and relationship

features. Through multiple layers of linear and non-linear trans-

formation layers, GCN generates new node features that contain

structural information of the graph. To obtain a global representa-

tion of the image, we aggregate the node representations learned

by GCN in different layers—denoted as U𝑜𝑖 and U𝑟𝑖 𝑗 for object and

relationship nodes respectively—into a graph representation using

a graph pooling operation, known as readout [32, 52].

The entire representation learning model contains parameters of

embedding, the multi-modality fusion layer, and those of the GCN.

We describe the training details in Appendix A.1.

3.2 Semantic Space Partitioning
Formally, we denote the distance between the feature vectors 𝑓𝑖 , 𝑓𝑗
of two images 𝑖, 𝑗 as following,

𝑑𝑖𝑠𝑡 (𝑓𝑖 , 𝑓𝑗 ) = 1 −
𝑓𝑖
𝑇 𝑓𝑗

∥𝑓𝑖 ∥


𝑓𝑗 

 . (3)

Given a budget B, i.e., the number of representative images to be

sampled for human tasks, our partitioning method finds the repre-

sentation images by minimizing the following objective function:

𝑚𝑖𝑛
∑︁
𝑖∈D

∑︁
𝑗∈D

𝑑𝑖𝑠𝑡 (𝑓𝑖 , 𝑓𝑗 )𝑋𝑖 𝑗

𝑠.𝑡 .
∑︁
𝑗∈D

𝑋𝑖 𝑗 = 1

𝑋𝑖 𝑗 ⩽ 𝑌𝑗∑︁
𝑗∈D

𝑌𝑗 = B

(4)

where 𝑋𝑖 𝑗 indicates the decision of whether image 𝑖 is assigned to

partition 𝑗 ; 𝑌𝑗 indicates if image 𝑗 is selected as a representative

sample (note that the index 𝑗 is overloaded to represent both the

partition and the representative image of the partition).

Due to the large number of possible solutions that are associated

with the problem of finding an optimal set of representative samples,

it is very challenging to provide a deterministic solution.We employ

ameta-heuristic approach based on genetic algorithms (GA). Details

of our algorithm are described in Appendix A.2.

4 THE HUMAN COMPUTATION TASKS
We now describe the human computation tasks for specifying what

an image recognitionmodel SHOULD-KNOW andwhat it REALLY-KNOWS.

4.1 The SHOULD-KNOW Task
In this task, human workers are presented with a sampled image,

and the corresponding scene graph, to identify concepts (salient

objects, their attributes, and relations) in scene recognition. The

procedure is shown in Figure 3 (zoomed figures in Appendix A.3).

Workers are first asked to a validate the automatically generated

objects and relations within the scene graph. Erroneous objects

and relations can thereby be identified and filtered (Neural Motifs

performance in object and relation classification are 33%, 59% re-

spectively [53]). They are then tasked to b rate the relevance of

concepts in scene recognition using a slider ranging from 1 to 20

(not relevant at all to highly relevant).

To further scope down to the highly relevant concepts, workers

are asked to identify the minimum set of concepts that can suf-

ficiently identify the scene. It implicitly requires humans to first

c add missing concepts, and then d,e determine the indispens-

able concepts for identifying the scene in the given image. To add

missing concepts, workers need to specify the concept by entering

the name and drawing a bounding box in the image. In the case of

the concept being an object attribute or a relationship, the worker

needs to further specify the relations. Indispensable concepts are

selected using checkboxes from the concept list.

4.2 The REALLY-KNOWS Task
While a scene in the human mind is composed of objects possessing

clear boundaries and having intelligible locations in space relative

to each other [44], to the machine it is the composition of pixels

rather than objects. To understand machine behavior, we map the

pixels highlighted in warm colors by the saliency map, to actual

concepts that humans can understand. The procedure is shown in

Figure 4 (zoomed figures in Appendix A.3). Workers are asked to

a draw bounding boxes to annotate objects highlighted by the

saliency map, b name the objects and assign the attributes (e.g.,

color), c define relations among the objects, and d add all the

objects and relations highlighted by the saliency map to the list.

By comparing to their own mental models in scene recognition,

workers then e rate the relevance these objects/relations are in

identifying the scene, using a slider (ranging from 1 to 20, meaning

not relevant at all to highly relevant). They are also encouraged to

give reasons. Note that with annotations from this task, a charac-

terization of false positive prediction due to the wrong focus on

the spurious concept can already be obtained. We compare in our

experiments unknown unknowns detection using only the char-

acterization obtained from this REALLY-KNOWS task and that from

also the SHOULD-KNOW task.

5 EXPERIMENTAL SETUP AND RESULTS
We evaluate the performance of Scalpel-HS by investigating the

following questions
1
:Q1: How effective is it in detecting and charac-

terizing unknown unknowns? Q2: how informative are those char-

acterization provided by our framework? andQ3: how cost-efficient

is our framework under a limited budget? For these questions, we

further evaluate the contribution of the individual components of

Scalpel-HS and compare to the state of the art whenever possible.

1
Source code and data are available at https://sites.google.com/view/www22-scalpel-hs

https://sites.google.com/view/www22-scalpel-hs
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Figure 3: The procedure of the SHOULD-KNOW task for specifying what a model should know in scene recognition. (Zoomed in Appendix A.3)
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Figure 4: The procedure of the REALLY-KNOWS task for describing what a model really knows in scene recognition. (Zoomed in Appendix A.3)

5.1 Experimental Setup
Datasets.We use two image datasets: (1) PLACES: it contains 10
million images divided into over 400 unique scene classes with 5000

to 30,000 training images and over 100 test images per class. As not

all classes are about scenes, we select a subset of data containing

nine indoor scene classes. (Details provided in the Appendix A.4.)

The subset contains 60000 training and 1000 test images equally

distributed across the nine classes. (2) MIT67 : this dataset contains
15620 images in 67 indoor classes. Unlike the PLACES dataset, the

number of images varies across classes, however, there are at least

100 images per class.We filter images of the same set of scene classes

as PLACES and select a subset consisting of 3224 test images with

at least 100 images per class. Note that due to the limited number of

images in MIT67, there are only 3216 images left after filtering; we

therefore only use the training set of PLACES for model training.

Test sets from PLACES and MIT67 allow us to experiment with

model unknowns exposed in test data of different distributions.

Unknown Unknowns Creation.We consider the unknown un-

knowns characterization effective in two senses: it exposes the

reasoning of an image recognition model in a high-confidence yet

wrong prediction, and it allows for the detection of unknown un-

knowns images of the same type. Note that while the ground truth

labels are given in the test set—hence unknown unknowns images

are known by comparing the model output to the ground truth

labels—the ground truth of the model reasoning is in-transparent.

To cope with this issue, inspired by previous work [6], we bias

model reasoning by forcing the model to focus on spurious con-

cepts or to miss relevant concepts through data re-sampling. To do

so, we create unknown unknowns of False Positive by removing

concepts from training images of all classes except those of the

class of interest. By doing so, the model will strongly associate

the spurious concept with the class of interest and make wrong

predictions for test images of other classes. Similarly, we create un-

known unknowns of False Negative by removing concepts from the

training images of the class of interest (not other classes). To make

Table 1: Summary of induced unknown unknowns.

Type Index Class of Interest Concept

False Positive

FP1 Kindergarden person
FP2 Bedroom bed
FP3 Conference Room chair

False Negative

FN1 Kitchen oven
FN2 Bathroom sink
FN3 Dining Room wine glass
FN4 Living Room couch/sofa
FN5 Conference Room woman at table
FN6 Kindergarden boy wearing shirt

sure the concepts are distributed in several classes, we select 15

most frequent concepts (objects and relations) and then those that

are distributed across at least three classes. A co-occurrence matrix

between concepts and scene classes is provided in the companion

page. The induced unknown unknowns are summarized in Table 1.

Apart from evaluating the effectiveness of our framework in

exposing the incorrect reasoning and in detecting unknown un-

knowns that aremanually induced, we further look into the informa-

tiveness of the characterization for “natural” unknown unknowns,

i.e., those unknown unknown images without the chosen concepts

(or missed by the scene graph extractor). Note that while we can-

not make sure that the model makes high-confidence errors on all

images with the identified characteristics, we are sure about the

errors when they occur given the ground truth labels and about

model rationales for images annotated by our framework.

Scene Recognition Models. We conduct our experiment with

two state-of-the-art convolution neural networks, ResNet[19] and

DenseNet[23], which have shown superior performance on various

classification tasks [48]. We train the two scene classifiers for 50

epochs on the biased training data and confirm that biases are suc-

cessfully injected into the scene classifier by observing overfitting

of the performance metrics during the training phase.
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Table 2: Performance (P = Precision, R = Recall, and F = F1-score) comparison with baseline methods on detecting unknown unknowns images.
We highlight the best performance for each metric in bold.

Type Comparison Method
ResNet DenseNet

Places MIT67 Places MIT67
P R F P R F P R F P R F

False Positive

Random 0.383 0.187 0.251 0.311 0.158 0.209 0.39 0.161 0.228 0.336 0.120 0.177

Least Average Similarity 0.558 0.272 0.366 0.318 0.161 0.214 0.558 0.272 0.366 0.663 0.218 0.329

Least Maximum Similarity 0.379 0.185 0.249 0.232 0.118 0.156 0.379 0.185 0.249 0.616 0.209 0.312

Most Uncertain 0.348 0.170 0.228 0.44 0.223 0.296 0.351 0.183 0.240 0.53 0.190 0.279

UUB 0.629 0.378 0.472 0.755 0.383 0.509 0.617 0.394 0.480 0.702 0.282 0.402

Scalpel-HS 0.855 0.522 0.648 0.915 0.465 0.616 0.874 0.716 0.787 0.766 0.521 0.620

False Negative

Random 0.21 0.08 0.11 0.28 0.152 0.197 0.293 0.271 0.281 0.33 0.09 0.141

Least Average Similarity 0.542 0.279 0.368 0.663 0.218 0.329 0.542 0.279 0.368 0.589 0.155 0.246

Least Maximum Similarity 0.372 0.185 0.247 0.616 0.209 0.312 0.372 0.185 0.247 0.495 0.135 0.212

Most Uncertain 0.585 0.219 0.319 0.452 0.246 0.319 0.549 0.237 0.331 0.44 0.12 0.188

UUB 0.551 0.634 0.589 0.480 0.376 0.422 0.553 0.649 0.597 0.456 0.271 0.340

Scalpel-HS 0.711 0.525 0.604 0.653 0.435 0.522 0.577 0.678 0.624 0.704 0.364 0.480

Baseline Methods. Following previous work [27, 29], we compare

the performance of our pipeline against the following methods: 1)

Random Sampling: Randomly selects instances from the test data to

be queried with humans. 2) Least Average Similarity [8]: Computes

the average Euclidean distance for each test instance to all training

instances, and chooses the instances with the highest distances. 3)

Least Maximum Similarity [8]: Computes the minimum Euclidean

distance of test data instances to all training data instances and

chooses instances with the highest distances. 4)Most Uncertain [42]:

Ranks the instances in the test dataset by increasing order of the

prediction confidence as assigned by the scene classification model.

5) UUB [27]: Combines clustering and the bandit algorithm to query

an Oracle. Least Average Similarity and Least Maximum Similarity

are popular outlier detection methods; Most Uncertain is similar

to the uncertain sampling strategy used in active learning; and

UUB is the state of the art unknown unknowns detection method.

Apart from those, we further compare with variations of our own

framework considering only output from the REALLY-KNOWS task,
and those with other baseline representation learning and data

sampling methods.

EvaluationMetrics. For effectiveness evaluation, we use Precision
and Recall to measure the performance on unknown unknowns

identification. We consider detection performance in both cases

when we are sure the unknown unknowns happen due to the in-

jected data biases and in the entire test set.

Crowdsourcing. We crowdsourced 300 images from each dataset,

selected by our feature space partitioning method. We present the

same set of images for both the SHOULD-KNOW and REALLY-KNOWS
tasks. For each task, we recruited 300 workers on Prolific

2
. For

quality control, only workers whose approval rate was greater than

90% were considered as qualified; to avoid learning bias between

the two tasks, each worker is allowed to perform only a single task

throughout the entire experiment. The authors manually examined

the quality of worker annotations on a random sample, which was

found satisfying. Each worker was paid 1.15 USD (0.8 GBP) for

participating in our study, translating to an average hourly reward

of 10.25 USD (7.41 GBP).

2
https://www.prolific.co

5.2 Scalpel-HS Performance
Effectiveness. Table 2 reports the performance of comparison

methods on detecting unknown unknown images.

We observe that among the baselines, Most Uncertain, which is

widely used in detecting known unknowns, yields low performance

(similar to Random), providing evidence for the important difference

between the problems of detecting known unknowns and unknown

unknowns. Among the two outlier detection methods, Least Aver-

age Similarity generally outperforms Least Maximum Similarity,

indicating that unknown unknowns are distant to the general im-

age population in the feature space. UUB, which considers model

confidence, gives better performance than all the other baseline

methods, showing that unknown unknowns are related to not only

the data but also what models have learned from the data. Most im-

portantly, our proposed framework Scalpel-HS achieves the best

performance across all settings (unknown unknown types, datasets,

and metrics), and outperforms UUB by a significant margin of 31%

in F1-score, a strong evidence demonstrating the effectiveness of

our framework in unknown unknowns detection.

The relative detection performance of Scalpel-HS on the two

types of unknown unknowns (False Positive vs. False Negative)

is consistent across datasets given the same model; similarly, it is

consistent across models given the same dataset. Those results show

the robustness of our framework in unknown unknowns detection.

Informativeness. To gain a deeper understanding of the infor-

mativeness of unknown unknowns characterization provided by

Scalpel-HS, we report in Table 3 its performance on uncovering

the exact reasoning of the model on unknown unknown images.

We observe that our framework successfully exposes the character-

istics of all manually created unknown unknowns (except FP3 on

MIT67, which corresponds to 13 images only), showing the strong

characterizing power of our framework for unknown unknowns.

We find a large variability of the performance in detecting unknown

unknown images with different characteristics, showing the speci-

ficity of unknowns characteristics for detection. As a remark, we

note there is a discrepancy between the overall performance in Ta-

ble 3 and Table 2; this is due to the presence of “natural” unknown

unknowns that are not manually induced.

https://www.prolific.co
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Table 3: Scalpel-HS Performance in uncovering ResNet reasoning on
unknown unknown images (FP = False Positive, FN = False Negative,
# = the number of corresponding unknown unknown).

Type Index PLACES MIT67
# P R F # P R F

FP

FP1 488 0.896 0.588 0.710 158 0.769 0.443 0.562

FP2 618 0.939 0.629 0.753 545 0.636 0.366 0.465

FP3 9 0.16 0.111 0.13 13 0.0 0.0 0.0

All 1115 0.914 0.607 0.729 716 0.666 0.384 0.487

FN

FN1 45 0.531 0.377 0.441 330 0.628 0.472 0.539

FN2 60 0.275 0.5 0.355 90 0.755 0.453 0.566

FN3 162 0.721 0.623 0.668 166 1 0.282 0.440

FN4 98 1 1 1 76 0.709 0.549 0.619

FN5 16 0.086 0.25 0.129 207 0.166 0.052 0.08

FN6 47 0.095 0.148 0.116 66 0.755 0.486 0.592

All 428 0.516 0.600 0.555 880 0.672 0.455 0.543

Table 4: Examples of “natural” unknown unknowns identified by
Scalpel-HS for ResNet. Note that False Positive is defined w.r.t. Pre-
dicted Class and False Negative is defined w.r.t. True Class.)

Type True Class Concept Predicted Class

False Positive Hospital Room (+)sink, (+)counter Bathroom

False Negative

Kitchen (-)oven, (-)counter Bathroom
Conference Room (-)chair at table Kitchen

We show in Table 4 a few those additional unknown unknowns

exposed by our framework, i.e., those that are not manually induced.

Those characterizations provide easy-to-understand reasons for

model failures in unknown unknowns and are thus highly useful

for identifying similar errors. In our experiment, they allow us to

detect 19% extra False Positive natural unknown unknowns, and

38% extra False Negative natural unknown unknowns.

We show examples of manually induced unknown unknowns

detected by our framework in Appendix A.5 and more (including

natural ones) in the companion page.

Cost-Efficiency. Figure 5 depicts the performance of Scalpel-HS
under different budgets. As expected the precision decreases and

recall increases when the budget increases; yet, we observe that

the decrease in precision is much slower than the increase in recall.

With 300 images annotated, accounting for 3% of the overall test

images in PLACES and 20% of the unknown unknowns with the

identified characteristics, we reach a recall of over 60% of all the

unknown unknowns; on MIT67, the 300 annotated images account

for 9% of the overall test images and 19% of the unknown unknowns

with the identified characteristics, we reach a recall of 42%. Those

results show that our framework allows to detect 2x to 3x unknown

unknowns w.r.t. a given budget, demonstrating that our framework

is highly cost-efficient.

5.3 Contribution by Automatic Components
We now evaluate the contribution of our representation learning

and image sampling methods. Figures 6 (a,b) compare the perfor-

mance of our framework with our proposed semantically-rich rep-

resentation learning method and the method with visual features

only for representation learning (ResNet152 pre-trained on Ima-

geNet and fine-tuned on our dataset, the rest components of the

framework kept the same). The result shows that our proposed
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Figure 5: Performance of our framework on unknown unknowns
detection for ResNet under different budgets.

representation learning method is a better approach in both preci-

sion and recall across almost all budgets, signifying the utility of

semantic features in the images for image sampling, and ultimately

for unknown unknowns characterization and detection.

Figures 6 (c,d) compare the performance of our framework with

our proposed semantic space partitioning (SSP) and other baseline

data partitioning or sampling methods. These include: 1) Random

Sampling; 2) DSP [27]: optimizes the overall distances within data

partitions (minimization) and across partitions (maximization), and

then randomly sample representative images. 3) K-means: gener-

ates clusters and the nearest instance to the center of each cluster

(mean) is selected as the anchor of that partition. We observe that

SSP achieves much higher precision with comparable recall (higher

when the budget increases), showing the superiority of our parti-

tioning methods in sampling representative unknown unknowns

and the effectiveness of joint partitioning and sampling.

5.4 Impacts of SHOULD-KNOW and REALLY-KNOWS
We evaluate the effect of including human annotations, and in

particular, human specification of what a model should know, by

comparing the following configurations of our framework: 1) no

human task, 2) including only the REALLY-KNOWS task, and 3) in-

cluding both the REALLY-KNOWS and SHOULD-KNOW tasks.

Figure 7 compares the performance of those configurations under

different budgets. We observe that involving human annotations

has a big impact on the precision under any budget. In addition, we

observe that integrating human annotations has more impact on the

recall as the budget increases. Compared to the version of no human

tasks, our framework improves by 26% and 10% in precision and

recall, respectively (budget=300). Compared to REALLY-KNOWS only,
with SHOULD-KNOW the performance of Scalpel-HS improves by 5%

in both precision and recall. We also notice that the SHOULD-KNOW
task is especially useful for precise identification of unknown un-

knowns when the budget is low.
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Figure 6: Comparing the effects of our proposed representation learn-
ing (RL) and data sampling (SSP) with baseline methods on the per-
formance of our framework under different budgets. Results are
obtained on ResNet on the PLACES dataset.

6 RELATEDWORK

Unknown Unknowns. Errors of machine learning fall into two

broad categories, namely known unknowns and unknown unknowns,
denoting low- and high-confidence errors, respectively. Known

unknowns have been extensively studied in the literature of active

learning [42]. A set of data sampling strategies have been introduced

e.g., query-by-committee [43], uncertainty sampling [28], expected

error reduction [39]. More recent development concerns with the

dynamic selection of optimal strategies in the training process [7, 9,

21]. All those strategies rely on information provided by the model,

thus are not suitable for the identification of unknown unknowns

that the model is unaware of.

Unknown unknowns are drawing increasing attention recently

due to the criticality for safety and user trust in high-stakes ap-

plications. A seminal work by Attenberg et al. [5] proposes to ask

humans to gather publicly accessible instances that are potentially

difficult for a model to handle. This approach has been recently

extended by enabling humans access to more information sources

to improve the efficiency of unknown unknowns detection. For

example, Lakkaraju et al. [27] assume human accessibility to the

data and introduce a bandit algorithm to exploit data similarity for

faster detection. Vandenhof et al. [49] on the other hand assume

accessibility to model parameters and propose to engage human

contributors to generate instances that contradict model reasoning.

Most work so far has focused only on the detection task, with the

exception of Liu et al. [29] that propose to identify the “pattern” of

unknown unknowns for detection, bringing implicitly the task of

unknown unknowns characterization to the horizon. Yet their work

does not study characterization on its own—e.g., effectiveness or

informativeness. To the best of our knowledge, we are the first to

present a focused study on unknown unknowns characterization,

considering the roles of humans in both requirement specification
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Figure 7: Impacts of human tasks on the performance of our frame-
work under different budgets.

and machine learning behavior interpretation, supported by auto-

matic computational methods for scaling out human contributions.

Automatic and Human Methods. Unknown unknowns arise

from biases in the training data. As such, methods developed for

outlier detection are relevant for unknown unknowns detection.

Typical methods can be characterized as either parametric [1, 2] or

non-parametric [13–15] i.e., with or without assumptions on the

underlying data distributions. In unknown unknowns detection,

outlier detection methods are limited in that 1) they assume the

accessibility to the reference data (i.e., training data) which is not

necessarily available as in our setting, and 2) they do not take into

account what a model has learned thus is limited to identifying

model unknowns as we have shown in our experiment.

Another closely related line of work is human-in-the-loop (HItL)

machine learning, where human intelligence has been leveraged

to address inherent limitations of ML such as reliability and inter-

pretability. Early work in HItL methods mainly focuses on leverag-

ing human intelligence for data labeling [10, 37]. More recent work

has investigated the advantage of human computation in debugging

ML system components [33] and in identifying biases and noisy

labels in the data [22, 51]. The most closely related work, as we

discussed, is Lakkaraju et al. [27] and Liu et al. [29] that use HItL
methods for unknown unknowns detection. Recent work that has

directly inspired ours is Balayn et al. [6] that propose to use human

computation to interpret the behavior of image classifiers by attach-

ing semantic concepts to the saliency maps of classification. We

employ this method for unknown unknowns characterization in

image recognition, and take a step further to show that by including

human specified requirements of what a model should know, we

can significantly improve unknown unknowns characterization.

7 CONCLUSION
We presented Scalpel-HS, a human-in-the-loop, semantic analysis

framework for characterizing and detecting unknown unknowns of

image recognitionmodels. It involves human contributors to specify

bothwhat themodel should know and describe what it really knows,

while minimizing the cognitive load of the tasks leveraging scene

graph extraction and machine learning interpretability techniques.

It scales out human contributions through both a new semantically-

rich representation learning and data sampling method. Our ex-

tensive evaluation on multiple models and datasets with different

types of unknown unknowns demonstrates that characterizations

provided by Scalpel-HS are not only informative but also highly

effective and cost-efficient for unknown unknowns detection.
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A APPENDIX
A.1 Learning Image Representations
To obtain graph-level representations, we train the graph encoder

end-to-end using the approach proposed by Sun et al. [47], by

maximizing the mutual information between graph-level and patch-

level representations. The patch-level representation refers to the

representation of nodes learned by aggregating the features of their

neighborhood nodes, at the last GCN layer, while the graph-level

representation is a fixed length vector obtained by pooling all patch-

level representations. To train our graph encoder, we define the

following objective function:

𝑚𝑎𝑥
1

|𝐺 |
∑︁
𝑔∈𝐺


1

|𝑔|

|𝑔 |∑︁
𝑖=1

𝐷

(
®𝑈𝑖 , ®𝑈𝑔

)
where |𝐺 | is the number of graphs in train set, |𝑔 | is the number

of nodes in graph 𝑔, and ®𝑈𝑖 ,
®𝑈𝑔 are representations of node 𝑖 and

graph 𝑔, respectively. 𝐷 denotes a mutual information estimator

which is modeled as a discriminator to score the agreement between

patch-level and graph-level representations. The agreement score

is obtained by simply computing the dot product between two

representations.

Hyperparameter Setting. The number of GNN layers are cho-

sen from {4, 8, 12}. Initial learning rate is chosen from the set

{0.01, 0.001, 0.0001}. We set the batch size to 64. The number of

epochs are chosen from {30, 60, 90}.

A.2 Semantic Space Partitioning Algorithm
The input of our GA-based method is a set of data points D =

{𝑑1, 𝑑2, ..., } where each 𝑑𝑖 consists of (feature vector, weighted

concept) pairs, and the number of representative samples B to be

found. Note that the number of generated partitions is equal to

the number of representative samples. We initialize the genetic

algorithm by constructing a population of random chromosomes P
= {𝑝1, 𝑝2, ..., }, where each chromosome 𝑝𝑖 consists of B candidate

samples. Algorithm 1 implements the fitness function, which corre-

sponds to the proposed objective function (See Eq.4). The fitness

function guides the exploration through the search space towards

an optimal solution.

GAs are prone to premature convergence to local optima. In-

spired by [40], we address this problem by adjusting the mutation

rate (Pm) while the algorithm explores the search space. To avoid

the generation of invalid solutions and to improve the performance

of the GA, we use a greedy approach to the mutation process, which

mutates the offspring only if the mutated solution gains lower fit-

ness value.

Hyperparameter Setting. Population, elitism, mutation-rate and

cross-over rate are regarded as hyper parameters, and therefore

can be found via grid search (𝑁 ∈ {50, 100, 150, 200}; elitism 𝐸 ∈
{5, 10, 15, 20, 30}; mutation rate 𝑃𝑚 ∈ {0.0005, 0.001, 0.005, 0.01, 0.05};
and cross-over rate 𝑃𝑐 ∈ {0.5, 0.6, 0.7, 0.8, 0.9}). We set𝑁 = 100;𝐸 =

20%; 𝑃𝑚 = 0.005;𝑎𝑛𝑑𝑃𝑐 = 0.7. We used a stagnation based termi-

nation criterion; following [3], we terminate the algorithm after

D√B generations, where B denotes the number of representative

samples to be found, and D is the number of data points.

Algorithm 1 Fitness algorithm

1: procedure Fitness(𝑅,𝐷, 𝐹,𝑊 )

2: 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 ← 0

3: for 𝑑 ∈ 𝐷 do
4: 𝑚𝑎𝑥_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ←∞
5: for 𝑟 ∈ 𝑅 do
6: 𝑓𝑟 ← 𝐺𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐹,𝑊 , 𝑟 )
7: 𝑓𝑑 ← 𝐺𝑒𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐹,𝑑)
8: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ← 𝐶𝑜𝑠𝑖𝑛𝑒 (𝑓𝑟 , 𝑓𝑑 )
9: if 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≤𝑚𝑎𝑥_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 then
10: 𝑚𝑎𝑥_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ← 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

11: end if
12: end for
13: 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 ← 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 +𝑚𝑎𝑥_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

14: end for
15: return 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠

16: end procedure
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Figure 8: Example of unknownunknowns characterized and detected
by Scalpel-HS: (upper-row) False Negative <Living room, (-)sofa, Dorm
room> and (lower-row) False Positive <Conference room, (+)person,
Kindergarden>. For each case, we show the sampled representative
image with relevant concepts on the left and an additional similar
unknown unknown image on the right. All images are shown to-
gether with a corresponding saliency map showing where the model
is attending to in making the incorrect prediction. Note that in the
False Negative case, the sofa leads to False Negative w.r.t. Living
Room yet False Positive w.r.t. Dorm Room.

A.3 Annotation Workflow in Large Figures
Figures 9 and 10 show the zoomed version of our SHOULD-KNOW and
REALLY-KNOWS human computation tasks.

A.4 Experimental Setup Details
We filter the two datasets by keeping images of the following scene

classes: dining room, bathroom, conference room, kindergarden, hos-
pital room, kitchen, living room, bedroom, dorm room.

A.5 Examples of Unknown Unknowns
Identified by Scalpel-HS

We show a few examples of unknown unknown images Scalpel-HS
identified and characterized, for both False Positive and False Nega-

tive. Figure 8 illustrates two characterizations of each type for both

the sampled images (i.e., anchors) two similar ones detected by our

framework.
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Validating relations (correct or wrong)

a

Rating the relevance of relations and giving reasons

b

Adding missing relations

c

Defining the minimum relation set for scene
identification

d

Defining the minimum object set for scene identification

e

Figure 9: The procedure of the SHOULD-KNOW task zoomed.

Drawing bounding boxes to annotate objecs highlighted
by the heatmap

a

Naming objects and assigning attributes

b

Defining relations using the objects annotated

c

Adding all the objects and relations highlighted by
the heatmap

d

Rating the relevance of objects/relations for identifying the scene

e

Figure 10: The procedure of the REALLY-KNOWS task zoomed.
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