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Abstract
Training data creation is increasingly a key bottleneck for developing machine learning, 
especially for deep learning systems. Active learning provides a cost-effective means for 
creating training data by selecting the most informative instances for labeling. Labels in 
real applications are often collected from crowdsourcing, which engages online crowds for 
data labeling at scale. Despite the importance of using crowdsourced data in the active 
learning process, an analysis of how the existing active learning approaches behave over 
crowdsourced data is currently missing. This paper aims to fill this gap by reviewing 
the existing active learning approaches and then testing a set of benchmarking ones on 
crowdsourced datasets. We provide a comprehensive and systematic survey of the recent 
research on active learning in the hybrid human–machine classification setting, where 
crowd workers contribute labels (often noisy) to either directly classify data instances or 
to train machine learning models. We identify three categories of state of the art active 
learning methods according to whether and how predefined queries employed for data 
sampling, namely fixed-strategy approaches, dynamic-strategy approaches, and strategy-
free approaches. We then conduct an empirical study on their cost-effectiveness, showing 
that the performance of the existing active learning approaches is affected by many fac-
tors in hybrid classification contexts, such as the noise level of data, label fusion technique 
used, and the specific characteristics of the task. Finally, we discuss challenges and identify 
potential directions to design active learning strategies for hybrid classification problems.
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1 Introduction

Despite remarkable advances in machine learning (ML), training data remains a key bot-
tleneck for the successful application of ML techniques. Obtaining a large amount of high-
quality training data is usually a long, laborious, and costly process. Active learning (AL) 
provides an effective means to accelerate the process, by iterating data labeling and model 
training, and identifying at each iteration which data to label next, to converge more rapidly 
and effectively to an accurate model. Crowdsourcing is often used in conjunction with ML, 
both as a way to collect labeled data efficiently and as a way to assist trained models for 
predictions where the model confidence is not deemed sufficient (Callaghan et al. 2018; 
Krivosheev et al. 2021). Despite their joint usage, the interaction between AL and crowd-
sourcing has been largely unexplored. This interaction is non-trivial for many reasons: for 
example, crowdsourcing typically produces rather noisy labels and the impact of such noise 
on ML algorithm confidence estimation and calibration is still unclear. Furthermore, at 
every AL iteration, we are faced with several choices, from how to aggregate crowd votes 
on a label to whether we should ask the crowd to label new data items or verify (reduce the 
noise on) already labeled items—and these choices may impact AL performance.

This paper reviews existing AL approaches and investigates their performance in the 
hybrid human–machine classification setting, where crowd workers contribute labels (often 
noisy) to either directly classify data instances or to train an ML model for classification. 
Unlike existing surveys (Settles 2010; Aggarwal et al. 2014) that focus on the algorithmic 
design of AL and the review paper about integrating AL with deep learning (Budd et al. 
2019), here we aim at re-evaluating existing AL approaches in terms of cost-effectiveness 
when data labels are crowdsourced, and so given the constraints of a limited crowdsourc-
ing budget and noisiness of worker-contributed labels.

To this end, we first review existing AL approaches under three categories, based on 
their reliance on a strategy, that is, specific queries to get the sample of interest from the 
data. These categories are: (i) fixed-strategy approaches, that apply a specific item selec-
tion method regardless of the data or problem, (ii) dynamic-strategy approaches that have 
a portfolio of strategies and choose one each time they need to sample a batch of items for 
labeling, based on past performance on that specific problem and data, (iii) strategy-free 
approaches that do not have any apriori selected portfolio of strategies, but rather learn 
the best strategy from scratch based on the problem, data, and prior experiences. We also 
review proposals in the literature that discuss how AL can deal with noisy labels. We then 
report the results of an extensive experimental comparison evaluating the performance of 
the different AL approaches in human–machine classification.

We evaluate the performance of AL approaches under two different scenarios: (1) ML 
only: this is the “traditional” approach of training a model with AL and then testing its 
performance on a pool of items. (2) Hybrid, where crowd and ML interact also in the clas-
sification phase, not just in data labeling. Indeed, many problems we face have a finite pool, 
where the set of items to classify is finite, and there is therefore a trade-off between spend-
ing our budget or effort to train an ML model (using AL methods) versus spending that 
budget to directly classify items in the pool via the crowd, or using a combination of crowd 
and ML.

To run this comparison, we developed a library of AL approaches collecting implemen-
tations provided by the authors when available, and re-implementing them when we could 
not find existing code. As part of this process, we also created a collection of crowdsourced 
datasets containing micro-level information (i.e., individual crowd votes), by aggregating 
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the publicly available ones and adding the ones we collected (note that most available 
crowdsourced datasets do not make individual votes available). Both the software library1 
and the collection of benchmarking datasets2 are made freely available to the scientific 
community. We believe that both the implementations and the crowdsourced micro-data 
will be an important contribution in their own right given the difficulty we had in obtaining 
both, despite extensive searches.

An important lesson we learned from the experimentation is that prior conclusions 
on the performance of AL approaches obtained in non-crowd labeling settings cannot be 
blindly extended to crowdsourced data. Specifically, strategy-free approaches that have 
shown to be effective in many contexts do not achieve the best performances across crowd-
sourced datasets. We speculate that this can be due to the impact of noise in ML model cal-
ibration and uncertainty estimation. We also observed that hybrid classification improves 
the performance of AL approaches over crowdsourced datasets.

In summary, we make the following contributions:

• We identify three categories of AL approaches in the literature and analyze their char-
acteristics and effectiveness.

• We contribute a library of implementations of state-of-the-art AL algorithms and a col-
lection of benchmarking datasets for human–machine classification.

• We report the results of an extensive experimental evaluation, providing insights on 
the performance of existing AL strategies in hybrid human–machine classification con-
texts.

• We provide a critical discussion on the main insights that emerged from our analysis, 
highlighting relevant open challenges and potential future directions to address them.

2  Active learning strategies: a review

AL (Cohn et al. 1996) has been a very lively research field over the last decade. Given a set 
of items I and an ML algorithm M, AL aims at defining a strategy to progressively sample 
items from I on which to obtain true labels for, so that M can be trained with a smaller 
dataset with respect to random item sampling. The underlying assumption is that obtaining 
training data is costly, and therefore minimizing the size of such dataset for a given target 
accuracy is highly beneficial (Johnson et al. 2018). In the following, we review existing AL 
approaches by grouping them in terms of the type of strategy used to choose the sample of 
interest.

2.1  Fixed-strategy approaches

Pioneering fixed-strategy approaches have been proposed in the 1990s. Seung et al. (1992) 
proposed the query by committee (QBC) approach, which polls a committee of different 
classifiers trained on the current set of labeled items to predict the label of each unlabeled 
item. Then, items to label are selected based on the maximum degree of disagreement 
among the classifiers. They showed that the prediction error decreases exponentially fast 

1 https:// tinyu rl. com/ source- code- data- resul ts.
2 https:// github. com/ Trent oCrow dAI/ crowd sourc ed- datas ets.

https://tinyurl.com/source-code-data-results
https://github.com/TrentoCrowdAI/crowdsourced-datasets
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in the number of queries. The approach and experimentation are however limited to par-
ametric learning models with continuously varying weights and cases where learning is 
perfectly realizable, and the learning algorithm is Gibbs algorithm (Haussler et al. 1991). 
In Freund et al. (1997), they proved that QBC such an exponential decrease is guaranteed 
for a general class of learning problems. They used two machine classifiers as the “com-
mittee”, and determined general bounds on both the number of queries and the number 
of instances to be labeled. Specifically, the paper defines higher and lower bounds for the 
expected information gain of QBC and proves that if the queries have high expected infor-
mation gain then the prediction error is guaranteed to decrease rapidly with the number of 
queries. McCallum and Nigam (1998) follow a similar “committee-based” approach but 
apply expectation-maximization (EM) to determine class probabilities and the extent to 
which classifiers disagree, and weigh item selection by their density, defined as the dis-
tance from a document to the others. With this approach, they reduced the required number 
of labeled documents by 42% over the previous QBC approaches.

Lewis and Gale (1994) presented the idea of uncertainty sampling, where the intuition 
is to sample items on which a model M is more uncertain, and this approach has long been 
a de-facto standard in the AL literature. They showed that aiming at reducing the uncer-
tainty of M significantly decreases the number of items that must be labeled to achieve 
the target accuracy. Cohn et al. (1994) proposed selective sampling, based on the idea of 
identifying uncertain regions in a vector space used to represent items, and then on select-
ing items (points in space) from such uncertain regions to minimize them. In the case of 
support vector machines, uncertainty sampling is implemented by selecting instances that 
are closest to the decision boundary (Tsai et al. 2010).

Roy and McCallum (2001) introduced the error-reduction sampling approach, aiming 
at selecting items that will reduce the expected error of the active learner in the next test 
examples. They computed the expected error rate of an item either by using the entropy of 
the posterior class distribution (log-loss), or by using the posterior probability of the most 
likely class (0-1 loss). Mozafari et al. (2014) focused on the same objective and proposed 
the MinExpError approach that uses the theory of non-parametric bootstrap (Efron and 
Tibshirani 1993) to design generic and scalable sampling strategies. First, bootstraps are 
created and assigned to different classifiers; then, the expected error of these classifiers for 
every single item in the unlabeled data is computed; finally, the items that minimize the 
expected error are selected. The authors showed that the MinExpError algorithm requires 
significantly fewer labeled items than existing approaches back then.

Probabilistic Active Learning (PAL) (Deroski et al. 2014) combined the idea of uncer-
tainty sampling and the expected error reduction with smoothness assumption (Chapelle 
et al. 2010). The underlying assumption is that if two items are close in the feature space, 
then their labels should also be close. An item is represented by two attributes; (i) the total 
number of labeled instances in the neighborhood of the item, and (ii) posterior estimate 
for the total number of the positive labeled neighbor set. This approach uses probabilistic 
estimates to investigate the neighborhood statistics of an item (label statistics), and meas-
ures the overall gain in classification performance (probabilistic gain) in terms of a user-
defined point classification performance (Parker 2011). It then selects items that improve 
the expected probabilistic gain most within their neighborhood. Its time complexity is 
comparable to uncertainty sampling, and it provides fast and stable performance.

Saar-Tsechansky and Provost (2004) proposed the Bootstrap-LV approach, which detects 
the variance in the probability estimates of bootstrap samples and uses weighted sampling 
to find the most informative items. Another weighted-sampling approach is known as 
Importance-Weighted Active Learning (IWAL) (Beygelzimer et al. 2009) which applies an 
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adaptive rejection sampling to each instance and assigns an importance weight (the inverse 
probability of being retained) to each retained item. Beygelzimer et al. (2010a) improved 
IWAL by using a rejection threshold based on the importance-weighted error estimates that 
minimize the prediction error. They showed that this approach improves the label complex-
ity which reflects the intrinsic difficulty of the learning problem (Wang 2011; Yan et al. 
2019).

Additional strategies include clustering instances and selecting cluster representatives as 
the most informative items (Brew et al. 2010), or combining representativeness and infor-
mativeness of instances to minimize the maximum possible classification loss (i.e. Query 
Informative and Representative Examples (QUIRE) (Huang et al. 2010)).

Although many of these approaches explicitly target generalization performance 
improvement, by means of expected error reduction (Roy and McCallum 2001; Zhu et al. 
2003; Guo and Greiner 2007; Roy and McCallum 2001; Mozafari et  al. 2014), or vari-
ance reduction (Schein and Ungar 2007; Settles and Craven 2008; Hoi et al. 2006), fixed-
strategy approaches are unlikely to work on all scenarios (Baram et  al. 2004; Hsu and 
Lin 2015). The reason is that they rely on intuitions and heuristics that do not generalize 
to all datasets and ML problems. For example, even in our experiments, discussed next, 
uncertainty sampling performs well when false positives and false negatives have the same 
“cost”, but less so when errors, and specifically errors of a specific type are more costly 
than others. This reveals that fixed-strategy approaches are not able to adapt to the data and 
the problem at hand.

2.2  Dynamic-strategy approaches

Approaches to dynamic strategy selection are in essence based on progressively learn-
ing which AL approach works best for the data at hand. This kind of “learning to learn” 
approach was first proposed by Baram et al. (2004), who showed that one single strategy 
cannot perform well on all problems. Their approach, named COMB, combines a group 
of AL strategies and dynamically evaluates them to achieve the best possible performance 
on the problem at hand. Although the online selection of strategies expedites the AL pro-
cess, combining multiple strategies and evaluating their performance brings two challenges 
(Baram et al. 2004). First, as dynamic strategies choose the next action by estimating the 
performance of each AL approach given the current state and the past observations, the 
quality of such estimation becomes crucial. However, items selected by the active learner 
are biased to be the “hard” ones and do not reflect the exact distribution of the items, 
and as such the quality estimation in absence of a test dataset (which is rarely available 
in AL) is biased. Second, at each batch only the label of the instances proposed by the 
selected AL approach are available; there is no way to know the consequences of labeling 
other instances proposed by other strategies. To handle these challenges, COMB (Baram 
et al. 2004) is designed as an adversarial multi-armed bandit problem (MAB) (Auer et al. 
1995, 2003; Audibert and Bubeck 2009) combined with the EXP4 algorithm (Auer et al. 
2003), where AL strategies are considered as “experts” and unlabeled items are the “slot 
machines”. Thus, the selection of an item is based on the opinion of all experts.

Hsu and Lin (2015) proposed the Active Learning by Learning (ALBL) algorithm as 
an extension of COMB. It represents each bandit machine as an AL approach and uses 
the EXP4.P algorithm (Beygelzimer et  al. 2010b) to select a machine adaptively. The 
main differences between COMB and ALBL are as follows: (i) while COMB represents 
each machine as a single unlabeled instance, a machine corresponds to an AL approach 
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in ALBL, (ii) both COMB and ALBL adopt the EXP4 algorithm, but COMB restricts each 
machine to being pulled only once, while a machine can be pulled many times in ALBL, 
and (iii) COMB uses human-designed evaluation criteria based on entropy, while ALBL 
uses an unbiased estimator of the test accuracy (weighted accuracy) to decide the rewards 
of the single strategies. Hsu and Lin (2015) showed that ALBL gives either comparable or 
better results than COMB. In general, the above papers show that ALBL works better than 
fixed-strategy approaches when the problem is easier to learn, while it is comparable for 
harder problems (where strategy selection is also more challenging).

While ALBL probabilistically blends the items suggested by different AL strategies 
to select the most informative one, Chu and Lin (2016) proposed blending the strategies 
themselves to build an aggregated strategy. Their approach, called LSA (Linear Strategy 
Aggregation), combines LinUCB (linear upper-confidence-bound) (Li et al. 2010), a state-
of-the-art MAB approach, with the task at hand. They represent experience as the weights 
with which to aggregate strategies, and adaptively adjust these weights when tackling a 
new problem. They aim to transfer this experience learned from the model to other AL 
tasks through biased regularization. They proved that the transfer of the learned experience 
is beneficial to achieve better performance.

Although dynamic-strategy approaches use bandits to ensemble multiple strategies in 
the learning process (Baram et al. 2004; Hsu and Lin 2015; Chu and Lin 2016), they still 
assume that there is a single best combination in each batch (stationary bandits). In so 
doing they are not robust to non-stationary cases, where the weighting proportions must 
be adapted over time in the learning process. Recently, strategy-free approaches have been 
proposed to overcome these limitations.

2.3  Strategy-free approaches

Strategy-free AL processes use prior experience (meta-data) to learn new tasks (active 
meta-learning). The main difference between dynamic and strategy-free approaches is that 
the latter does not rely on any human-designed strategies.

In this category, Konyushkova et al. (2017) devised a novel data-driven AL algorithm, 
named Learning Active Learning (LAL). LAL is formulated as a regression problem that 
learns how to predict the reduction in the expected generalization error when we add a new 
label to the training set. It uses Monte-Carlo sampling to correlate the test performance 
directly with the classifier and item properties. Both the classifier and the items are repre-
sented with a set of parameters so that LAL can sense any change in the training set. As a 
result, the learning state is continuously tracked as a vector whose elements depend on the 
state of the current classifier and the selected item. A drawback of this algorithm is being 
classifier-specific, which is designed as a random forest regressor.

Woodward and Finn (2017) and Fang et al. (2017) use reinforcement learning (RL) for 
learning an active learner in a data-driven approach. They adopted a stream-based AL pro-
cess in which the agent observes the data in sequence and decides whether a single item 
should be labeled by the agent itself or it should be asked to an oracle. Based on the deci-
sion, the agent receives a reward and a prediction model is adopted to be used in new tasks. 
They improved the performance of models, but they tend to learn only from related data-
sets and domains (Konyushkova et al. 2018.

Many other data-driven approaches for pool-based AL processes have been proposed 
recently. While Bachman et al. (2017) and Pang et al. (2018b) used RL to build the learn-
ing model, Liu et  al. (2018) formulated learning AL strategies as an imitation learning 
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problem (i.e., the machine is trained to perform a task from demonstrations by learning 
a mapping between observations and actions), Contardo et al. (2017) and Ravi and Laro-
chelle (2018) applied few-shot learning (i.e. classifying a new data having seen only a few 
training examples), and Pang et al. (2018a) extended the LSA approach using non-station-
ary multi-armed bandit with expert advice.

Active meta-learning approaches have also been developed in application-specific sce-
narios. Sun-Hosoya et al. (2018) developed (ActivMetaL), an active meta-learning recom-
mender system. ActivMetaL keeps the scores of multiple AL approaches on given tasks in 
a sparsely populated collaborative matrix, predicts the performance of each approach for a 
new task, and then fills the corresponding row of the matrix for this task. In this way, they 
predict which algorithm will perform best for the new task/dataset.

While capable of generalizing across learning task, these meta-learning approaches still 
have many limitations, such as being classifier specific (Bachman et  al. 2017; Contardo 
et al. 2017; Ravi and Larochelle 2018), having a greedy approach and missing a long-term 
reward (Liu et  al. 2018) or being limited to specific domains (i.e. imitation learning, or 
few-shot learning) (Bachman et al. 2017; Fang et al. 2017; Liu et al. 2018; Sun-Hosoya 
et al. 2018).

To overcome these limitations, (Konyushkova et al. 2018) proposed an RL variant of 
their LAL algorithm, named LAL-RL, that defines AL as a Markov Decision Process and 
tries to find the optimal and general-purpose strategy. LAL-RL is independent of the dataset 
and ML classifier (contrarily to LAL that is designed for Random Forests), and its objective 
does not depend on a specific performance measure. The authors show how LAL-RL can 
transfer learned strategies across substantially different datasets.

Recently, Desreumaux and Lemaire (2020) tested the performance of LAL-RL on 
20 real-world datasets and compared it to random sampling and uncertainty sampling. 
Although LAL-RL shows very good performance on average, it is not always better than 
random sampling, especially in the case of highly unbalanced datasets (Desreumaux and 
Lemaire 2020). In addition, their results show that the choice of the model is decisive (i.e. 
random forest classifier gives better results than logistic regression). They also report that 
LAL-RL is sensitive to the metric used to evaluate the performance, and it requires opti-
mizing many hyper-parameters. This analysis shows that even general-purpose strategy-
free approaches have limitations when dealing with real-world problems.

Although the main objective of these meta-learning approaches is to adapt the predic-
tion/learning model to new environments/tasks, they do not consider the characteristics of 
the target environment in the prediction model. Hence, they are likely to be effective in 
similar environments only. Vu et al. (2019) proposed a new approach that learns a good 
policy directly based on the target environment either by using a pre-trained AL model 
or learning a new policy from scratch considering the budget for human annotation. They 
showed that this approach is more effective than the previous work (Fang et al. 2017; Liu 
et al. 2018) when the source task and the target task are different. Rudovic et al. (2019) pro-
posed a deep Q-learning approach that is capable of dealing with multiple environments by 
learning a multi-modal AL strategy. They focus on the task of engagement estimation from 
real-world child-robot interactions during autism therapy. They employ an LSTM network 
to classify the individual modalities into engagement levels (i.e. low, medium, or high) and 
feed its predictions into the deep RL agent, making it capable of efficiently personalizing 
the interaction strategy to the target user.

In summary, the state of the art shows that the existing active meta-learning 
approaches can outperform the fixed-strategy and strategy-free approaches, especially 
when the dataset is not highly unbalanced. However, most of them do not present 
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comprehensive benchmarks to prove the transferability of the learned policies into real-
world tasks (i.e. when we do not have a separate test set) (Desreumaux and Lemaire 
2020). While showing a noticeable improvement in terms of generalization ability with 
respect to previous approaches, meta-learning approaches still cannot cope with all 
challenges that are to be faced in real-world scenarios.

Specifically, nearly any real-world application we encountered has two aspects that 
haven’t received much attention so far in AL research: the first is that the amount of 
noise in the labels is much higher with respect to standard settings where labels are 
provided by domain experts, and in crowdsourcing there are several trade-offs we can 
make to reduce the noise and to balance budget vs noise trade-offs (for example, we can 
collect more votes for the same items and aggregate them to get a more reliable label, or 
we can pay more budget to ask for highly rated workers, or we can instead focus on get-
ting a larger number of items labeled at low cost, although with higher noise). The sec-
ond is that the cost of false positive and false negatives (and more generally of different 
types of errors) is rarely the same and that low calibration error is often a key quality of 
a good ML model. There are however a few contributions on dealing with noisy labels 
and we discuss them next.

2.4  Dealing with noisy labels

While crowdsourced labels can be made to be very precise via redundancy and aggres-
sive worker selection/crowd testing strategies, the individual votes are often noisy. There 
indeed exists a line of work in the AL community that explicitly focuses on dealing 
with noisy labels. Zhao et al. (2011) proposed combining uncertainty and inconsistency 
(entropy of the label distribution) measures to select instances. The underlying idea is 
that the learning strategy should select items that are in unexplored regions or near the 
ones that may have been mislabeled. They also propose relabeling the mislabeled items 
via crowdsourcing. They show that when the labels are noisy and the aggregated label is 
not trustful (i.e. the aggregated label is provided by less than 50% of the workers, who 
annotated the corresponding item, in binary classification setting), then relabeling sig-
nificantly improves the performance of AL. Bouguelia et al. (2016) proposed a method 
for identifying and mitigating mislabeling errors, where they derive an informativeness 
measure to see how much a queried label would be useful if it was corrected. They show 
that this approach is more efficient in characterizing label noise compared to the com-
monly used entropy measure. Then, Bouguelia et al. (2018) extended this approach by 
measuring how much the queried item’s label is likely to be wrong, based on disagree-
ment with the current classification model, without relying on crowdsourcing.

A related line of work aims at addressing label noise by explicitly modeling the uncer-
tainty of annotators. Yan et al. (2010) introduce a model that jointly learns a classifier and 
infers annotators’ reliability, in an active learning setting that involves both data instance 
and annotators selection. Fang et al. (2012) consider the case when annotators can learn 
from one another to improve their annotation reliability. Zhong et al. (2015) model a sce-
nario where workers can explicitly express their annotation confidence, by allowing them 
to choose an unsure option. Yan et al. (2016) further consider labeler properties such as 
consistency. Yang et al. (2018) extend the problem to enabling deep active learning from 
crowds, i.e., enabling deep neural networks to actively learn from crowd workers. However, 
none of them tried to actively estimate the noise level of data during the learning process.



A review and experimental analysis of active learning over…

1 3

3  Experimental work

As we have seen, the near totality of existing AL approaches (i) assume that oracles pro-
vide the gold (ground truth) labels (ii) strive for accuracy as a metric, and (iii) assume 
classification is done by ML only. In reality, the situation and needs are different, especially 
when we have access to a large set of human annotators of different reliability. First, labels 
can be noisy; second, the trade-off between the benefit of a correct classification and cost 
of an error varies greatly by application, and achieving a low calibration error may be as 
important as achieving high accuracy; finally, in many scenarios, we do have the option of 
relying on human classification when ML is uncertain, and in those contexts it is important 
that ML learns to know when it doesn’t know.

In this section, we examine the behavior of AL approaches in crowdsourcing settings. 
Specifically, we focus on problems where we start from a blank slate, have a pool of items 
to classify and a crowd at our disposal, and need not only to choose/assess AL approaches 
but also to assess if the crowd is leveraged only to get labeled data for training or also to 
perform classification at inference time, as done in hybrid classification contexts (Kriv-
osheev et al. 2018a; Callaghan et al. 2018).

3.1  Problem formulation

We focus on hybrid binary classification problems where classification is accomplished 
via the combined contribution of humans and machines. The problem can be formulated as 
follows. We are given a tuple of (I, M, Q, B), where:

• I is a pool of unlabeled items to be classified.
• M is an untrained machine learning classifier.
• Q is an active learning query strategy.
• B is the budget available (expressed in terms of the total number of crowd votes we can 

ask).

Our aim is to classify all items I via the ML classifier M or/and crowd workers, assuming 
we do not have any training data to start with. To achieve this, we apply AL strategy Q 
for querying the most informative items T ⊂ I that will be annotated by crowd workers on 
money B. The annotated items T will be used as training data for machine M and finally, I 
will be classified based on M and the feedback collected from the crowd. Our hybrid AL 
workflow is described in detail in Algorithm 1.
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Algorithm 1 Hybrid AL workflow
Input: I, M , Q, B
1: LI, UI ← {}, I # labeled and unlabeled items
2: T ← {} # training dataset, {(item, label), ..}
3: V otesAll ← {} # set of crowd votes on items, {(item, worker, vote), ..}
4: b ← 0 # budget spent
5: while b < B do
6: batch ← select batchSize items from I(i.e., LI ∪ UI) via Q
7: V otesBatch ← collect crowd votes for items batch
8: V otesAll ← V otesAll ∪ V otesBatch
9: T ← AggregateV otes(V otesAll) # build training dataset
10: train M on T
11: test M on I
12: update UI, LI, b
13: end while
14: classify I based on M and V otesAll
15: return M, Classified Items

3.2  A new approach: Block Certainty

Most of the AL approaches do not consider cost-sensitive learning scenarios, in which 
different types of errors can be associated with different costs. This is the typical sce-
nario in medical screening tests for instance, where we try to uncover the presence of a 
disease. A false negative (FN) error (or missed alarm) is in this case extremely critical 
and much more costly than a false positive (FP) one (false alarm). The same is true in 
many enterprise contexts such as the ones some of the authors face daily, where com-
panies are ok if a customer request is not understood and has to be routed to an agent, 
but not ok if ML predicts the wrong intent and gives the wrong answer to the customer. 
An effective ML classifier for this scenario should be trained using a cost-sensitive loss, 
that potentially trades precision for recall. We thus propose a simple cost-sensitive AL 
approach, that we name “Block Certainty”, which intrinsically considers the relative 
harm of FN over FP errors during the AL process.

Let k indicate the relative harm of FN over FP errors, i.e., a single FN error is k times 
more costly than a FP one. Let p be the probability of an item being positive according 
to the machine M. Let d be the decision threshold for M. We first investigate how to set 
d so as to minimize the risk of the classifier M given k. Assuming p > d (item classified 
as positive), we define the risk score for this item as risk = 1 − p . Similarly, the prob-
ability of an item being negative is 1 − p . Assuming p ≤ d (item classified as negative), 
the risk score for this item will be risk = k ⋅ p . Figure 1 shows the relation between p and 
the risk score . The optimal classification threshold d is given by the value of p for which 
the lines risk = k ⋅ p and risk = 1 − p intersect, i.e., d = 1∕(1 + k).

Fig. 1  Risk score versus p 
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Algorithm 2 Block Certainty Sampling
Input: I, M , batchSize, k
1: p ← M .predictProba(I)
2: d ← 1

1+k

3: predPos ← [p[i]>d for i in I]
4: predNeg ← [p[i]≤d for i in I]
5: PosId ← argmax(predPos, size=d·batchSize)
6: NegId ← argmax(predNeg, size=(1-d)·batchSize)
7: return PosId + NegId

Then, in Algorithm  2 we define the “Block Certainty” sampling, where at every AL 
iteration we query predicted positive and negative items with the lowest risk score (accord-
ing to k) for further annotation.

3.3  AL approaches and ML classifier

We examine the following seven AL approaches: (i) random (R) (items are randomly sam-
pled), (ii) uncertainty (UC) (Lewis and Gale 1994), (iii) certainty (C) (the reverse of uncer-
tainty sampling, i.e., the most certain items are sampled), (iv) block certainty (BC) (our 
proposal for cost-sensitive sampling), (v) QUIRE (Q) (Huang et al. 2010), (vi) MinExpEr-
ror (MinExp) (Mozafari et al. 2014), and (vii) meta-learning (LAL) (Konyushkova et al. 
2017). We used R, UC, C, Q, and MinExp as the state of the art fixed-strategies that have 
been used in most of the comparative analyses in the literature. Since Konyushkova et al. 
(2017) already proved that LAL approach outperforms the state of the art dynamic strategy 
approach ALBL (Hsu and Lin 2015), we tested only LAL to have an intuition about adap-
tive approaches.

Since the LAL (Konyushkova et al. 2017) approach is specifically designed to work with 
the random forest classifier, we chose random forests as the underlying classifier for all AL 
approaches. We used the implementation provided by the scikit-learn library (Pedregosa 
et al. 2011) with the following parameters: n_estimators = 100, criterion = “gini”, max_
depth = None, bootstrap = True, class_weight = “balanced”, and random_state = 2020. To 
evaluate the effect of the choice of the classifier on the performance, we additionally evalu-
ated a subset of the AL approaches (excluding LAL) using a support vector machine as the 
underlying classifier.

3.4  Crowdsourcing and evaluation

3.4.1  Crowdsourcing scenarios

We consider the following two crowdsourcing scenarios in our experiments:

• Unlimited votes Every single item can be selected an unlimited number of times for a 
crowdsourced vote, as long as we have an available budget and voters.

• Limited votes There is a maximum number of votes maxVote that every single item can 
receive ( maxVote = 3 in the experiments). Upon reaching this limit, the corresponding 
item is removed from I and cannot be queried anymore. In principle, this limit could be 
automatically inferred via meta-learning approaches, but this out of the scope of this 
paper.
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3.4.2  Evaluation scenarios

We evaluate the results under two different cases:

• ML (only): We use the trained M to predict the label of each item in the pool I and 
evaluate its performance compared to the ground truth labels.

• ML+C: We take crowdsourced labels for items LI and use M to predict the label for 
the unlabelled items in UI. We evaluate the performance of this combined crowd-
machine classifier by comparing its predictions with the ground truth labels.

3.4.3  Label fusion methods

Since we use crowd answers instead of gold labels in the learning phase, it is important 
to consider that they may yield low-quality or noisy labels (Zheng et al. 2017). In the 
crowdsourcing literature, this problem is addressed by assigning each task to multiple 
crowd workers and then aggregating the votes (answers) to obtain the correct label. This 
process is called truth inference and relies on an aggregation strategy to combine labels. 
Several label fusion strategies has been investigated in the literature (Aydin et al. 2014; 
Demartini et al. 2012; Callison-Burch 2009; Fan et al. 2015; Li et al. 2014; Liu et al. 
2012; Ma et al. 2015).

Because of its simplicity and effectiveness, the most popular label fusion method is 
Majority Voting (MV) (Tu et al. 2019), which selects the label voted by the majority of 
the workers as the correct answer (Franklin et al. 2011; Parameswaran et al. 2012; Mar-
cus et al. 2011). We thus use majority voting as the label fusion strategy in our experi-
mental evaluation. A known limitation of majority voting is the fact that it assumes that 
all workers provide the same quality of answers. To measure whether the results depend 
on this simplifying assumption, we also ran an additional experimental investigation 
using a more refined label fusion method (Sect. 3.7).

3.4.4  Metrics

We use F1, F3, Accuracy, and Loss metrics to evaluate the performance of the machine 
classifier (ML) and of the hybrid crowd-machine classifier (ML+C). We define the Loss 
of classification as the following (Nguyen et al. 2015; Krivosheev et al. 2018b):

where k denotes how much the cost of a false negative outweighs the one of a false posi-
tive, FNN is the number of false negatives, FPN is the number of false positives, and |I| is 
the number of items in I. The Loss summarizes the subjective perspective of the risks for 
False Positive/Negative errors. This is especially common in real-world applications, such 
as potential credit card fraud, identifying tweets linked to criminal activities, or literature 
reviews where screening out a relevant paper is considered to be a serious error affecting 
the quality of the review, while a falsely included paper just requires some extra work by 
the authors.

(1)Loss =
1

|I|
⋅ (k ∗ FNN + FPN),
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3.5  Datasets

Crowdsourced datasets can either include the answer (label) of each crowd worker to each 
item or just provide the aggregated labels (a single discrete label for each item, deter-
mined by combining votes from multiple crowd workers). The latter type of datasets is less 
informative and doesn’t allow to test strategies that involve queries to individual workers. 
However, most of the available crowdsourced datasets are of this type. We thus created an 
open repository2 of the available crowdsourced datasets with individual crowd votes; we 
also added the datasets we collected. We provide a standard format for accessing the data-
sets so that they can be used in the experiments without any workload in preprocessing. 
Researchers can benefit from this repository for hybrid human–machine classification and 
ranking tasks, truth discovery based on crowdsourced data, estimation of the crowd bias, 
and active learning.

Table 1 shows the properties of each dataset we used in our experiments; the number of 
tasks, number of workers, total number of votes, minimum vote count per item, data pro-
portion in terms of the number of positives and negatives, batch count (a batch is a prede-
fined number of instances, where the batch count is the number of batches that defines the 
total number of iterations), size of a batch, and the number of experiments (repetitions) for 
each dataset. We show the distribution of labels for each dataset in Fig. 2.

The task in the Recognizing Textual Entailment (RTE) dataset (Snow et al. 2008) is to 
identify whether a given hypothesis sentence is implied by the information in the given 
text3.

The Emotion3 dataset (Snow et al. 2008) is about rating the emotion (“anger”) of a given 
text. Each rating is a value between 0 and 100, and we converted them to binary form (0 if 
rating ≤ 49, else 1).

The Amazon Sentiment-14 dataset (Krivosheev et al. 2018a) includes annotations about 
deciding whether the given product review belongs to a book or not. Similarly, the Ama-
zon Sentiment-24 dataset (Krivosheev et al. 2018a) includes annotations about whether the 
given product review has a negative or positive sentiment.

Table 1  Properties of the datasets

Datasets

RTE Emotion Amazon-1 Amazon-2 Crisis-1 Crisis-2 Crisis-3 Exergame

Tasks 800 100 1000 998 1948 1948 949 93
Workers 164 38 263 263 79 79 93 38
Total votes 8000 1000 4908 4873 6000 6000 4003 286
Min. vote 10 10 2 2 3 3 3 2
Data (+/-) 400/400 4/96 612/388 99/899 347/1601 883/1065 516/433 53/40
Batch count 40 5 50 50 90 90 50 5
Batch size 20 20 20 20 20 20 20 20
Exp. count 20 20 20 20 20 20 20 20

3 https:// sites. google. com/ site/ nlpan notat ions/.
4 https:// tinyu rl. com/ Amazo nSent iment.

https://sites.google.com/site/nlpannotations/
https://tinyurl.com/AmazonSentiment
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The Crisis-15 dataset (Imran et al. 2013) consists of human-labeled tweets collected dur-
ing the 2012 Hurricane Sandy and the 2011 Joplin tornado. The task is to decide whether 
the author of the tweet seems to be an eyewitness of the event. Similarly, Crisis-25 dataset 

Fig. 2  Label distributions of datasets

5 https:// crisi snlp. qcri. org/.

https://crisisnlp.qcri.org/
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(Imran et al. 2013) contains annotations about deciding the type of the message (tweet). 
The task in Crisis-35 dataset (Imran et al. 2013) is to analyze hurricane-related tweets and 
decide whether the tweet is informative or not.

Finally, the Exergame dataset includes annotations about whether the given paper 
describes a study that uses an exergame. An exergame is a form of interactive gaming 
where people do physical activities while playing a video game, that is, physical exercises 
by way of video games.

3.6  Results

The elaborated experiment results, all datasets, and the source code for reproducing the 
experiments are available online1 . In addition, we present the visual experiment results in a 
notebook6, while summarizing the important outcomes below.

Tables  2 and 3 show F1 scores of each AL approach in Scenario 1 and Scenario 2, 
respectively (bold cells show the best performing AL strategies). We observed that ML+C 
prediction outperforms the ML prediction on each dataset, regardless of the AL approach. 
When we compare F1 and F3 scores, the best AL approach remains the same. That is why 
we present F1 scores here, while F3 scores can be seen in the results sheet.7

Comparing the Loss with different k values, we noticed that (i) when the  harm of 
FP and FN is the  same ( k = 1 ) uncertainty sampling performs 35% better in average 
than other approaches, (ii) when the problem is characterized by high k value ( k ≥ 10 ) 

Table 2  F1 Scores in percentage (Scenario 1: Unlimited votes)

Dataset Evaluation AL approach

R UC C BC (k=1) Q LAL-R LAL-I MinExp

RTE ML 66.3 69.7 55.4 60 67.2 64 62.9 64.8
ML+C 68.4 72.1 56.7 61.1 67.4 66.7 65.5 66.8

Emotion ML 32.8 53 44.8 51.7 32.7 42.4 44 33.8
ML+C 42.2 68.4 60.2 70 48.5 60.2 56.6 42.7

Amazon-1 ML 93.9 96.2 58.6 74.3 70 92.5 92.7 92.4
ML+C 93.9 96.3 59.1 74.5 70.4 92.6 92.8 92.5

Amazon-2 ML 55 63.5 35 36.4 26 67.6 65.7 32.1
ML+C 60.7 70.1 40.2 42.5 31 72.5 71.4 34.2

Crisis-1 ML 31.4 7.5 14.9 5.9 7.7 27 28.5 11.8
ML+C 38.5 10.3 17.9 9.4 8.2 30.6 32.4 14.2

Crisis-2 ML 80.8 85.5 61.8 66.9 15.7 66.1 61.5 79.7
ML+C 81 86 62 67 16.1 66.3 61.6 79.9

Crisis-3 ML 85.2 89.5 69.8 68.7 47.6 69.4 73.1 84.1
ML+C 85.7 90.2 69.9 68.7 47.8 69.6 73.3 84.3

Exergame ML 79.4 81.5 74.9 73.4 79.4 77.8 77.4 78.5
ML+C 80.3 81.7 75 73.8 79.4 78.1 77.8 78.7

6 https:// tinyu rl. com/ ALExp erime ntRes ults.
7 https:// tinyu rl. com/ ALRes ultSh eet.

https://tinyurl.com/ALExperimentResults
https://tinyurl.com/ALResultSheet
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then block certainty sampling provides 25% better performance in average on five data-
sets, while uncertainty sampling provides 36% better performance in average across all 
datasets, and (iii) block certainty sampling approach outperforms others on five datasets 
with small k values ( k ≤ 0.1 ) with an improvement of 34.5% with respect to the average 
performance. We only present the results for k = 100 here (see Table 4), while keeping 
others in the notebook (see footnote 6).

When we analyze the performance of the approaches individually, we draw the fol-
lowing conclusions: 

Table 3  F1 Scores in percentage (Scenario 2: Limited votes)

Dataset Evaluation AL approach

R UC C BC (k=1) Q LAL-R LAL-I MinExp

RTE ML 65.4 70.2 61.5 64.9 57.6 63.9 63.7 65.6
ML+C 67.9 72.5 63.5 66.7 58.7 66.7 66.4 67.7

Emotion ML 35.4 44.2 35.8 44.9 38.8 41.7 41.1 35.7
ML+C 44.5 54.6 49.1 59.8 51.4 56.9 53.4 47

Amazon-1 ML 93.7 96.2 65.8 84.6 80.2 94.3 92.9 94
ML+C 93.8 96.3 66.2 84.8 80.7 94.5 92.9 94.1

Amazon-2 ML 56.6 70.3 43.6 63.9 42.8 67.1 66.6 52.9
ML+C 62.6 76.7 50.3 70.7 49.8 72.8 72 59

Crisis-1 ML 32.2 22.6 31 21.6 18.8 30.3 28.5 20.9
ML+C 39.6 28.6 36.7 27.1 24.5 35.5 34.5 25.2

Crisis-2 ML 81 86 71.1 69.2 73.1 73.7 73.2 80.7
ML+C 81.1 86.3 71.2 69.4 73.3 73.9 73.4 80.8

Crisis-3 ML 85.1 89.5 74.5 74.2 68 77.5 77.4 85.2
ML+C 85.3 90.1 74.7 74.6 68.3 77.8 77.5 85.5

Exergame ML 79.8 84 75.3 76.1 80 78.7 78.4 78
ML+C 79.9 84.5 75.4 76.1 80.3 79.5 79.1 78.3

Table 4  Loss ( k = 100 ) (Scenario 2: Limited votes)

Dataset AL approach

R UC C BC (k=1) Q LAL-R LAL-I MinExp

RTE 628.08 427 747.46 158 884.11 702.72 712.82 621.86
Emotion 6.24 5.2 5.55 4.74 5.3 5.39 5.39 6.14
Amazon-1 274.29 169.1 1465.4 1522.11 859.26 260.98 292.06 265.15
Amazon-2 256.16 176.7 335.31 347.77 342.4 188.39 189.2 291.47
Crisis-1 1400.06 1513 1406.86 1529.07 1553.88 1423.26 1446.3 3062.11
Crisis-2 756.29 460.36 1278.99 1454.45 1046.7 1287.1 1302.9 1543.61
Crisis-3 391.57 240.9 735.25 597.34 1113.8 685.46 667.1 393.94
Exergame 59.2 45.9 75.97 42.32 58.2 66.16 63.23 62.28
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1. Block certainty has an outstanding performance with very big and very small k values 
( k ≥ 100 and k ≤ 0.01 ) on RTE, Emotion, and Exergame datasets; so it can be used in 
domains where the harm of a false negative and false positive is very different, such as 
in literature reviews, or medicine.

2. Certainty and QUIRE (Huang et al. 2010) approaches did not show a promising perfor-
mance over crowdsourced data in terms of accuracy, F1, and F3 scores.

3. Random sampling performed comparable or sometimes better (i.e. in the Crisis-1 data-
set) over imbalanced data with more negatives.

4. Although it is claimed that LAL (Konyushkova et al. 2017) approach outperforms uncer-
tainty sampling (Lewis and Gale 1994), results show that uncertainty sampling outper-
forms others in most cases for the finite-pool hybrid classification over crowdsourced 
data.

5. Table 5 shows that uncertainty sampling and random sampling created the biggest 
number of training sets (note that we may relabel the training data and we may end up 
with a different number of votes per item; this affects the size of training data after the 
learning process ends).

6. Limited votes scenario increased the size of training sets for all cases. This shows that 
sampling strategies may be stuck at some items if we do not limit the maximum number 
of votes per item.

3.7  Further analysis

The previous experimental analysis was run using random forests as the underlying 
classifier and majority voting as the label fusion strategy. In this section, we investigate 
whether changing the classifier or fusion strategy affects the overall picture. Since the LAL 
(Konyushkova et al. 2017) approach is specifically designed to be used with random for-
ests, we omit it from the following analysis. We also omit minExpError (Mozafari et al. 
2014) as its complexity is very high and it did not show to be competitive with less expen-
sive approaches. Hence, we focused on the following AL approaches: (i) random (R), (ii) 
uncertainty (UC) Lewis and Gale (1994), (iii) certainty (C), (iv) block certainty (BC), and 
(v) QUIRE (Q) (Huang et al. 2010).

Table 5  Size of training set (Scenario 2: Limited votes)

AL approach Dataset

RTE Emotion Amazon 1 Amazon 2 Crisis 1 Crisis 2 Crisis 3 Exergame

R 523.6 70.5 649.55 649 1199.9 1197.9 638.6 72.3
U C 645.2 58.45 806.85 742.95 1129.3 1478.8 768.25 84.9
C 351.65 51.05 404.9 491.6 837.45 772.3 421.65 57.95
BC (k=1) 356.95 50.45 416.75 582.25 976 779.4 423.75 58.7
Q 283.7 52.05 357.85 358.8 622.65 622.65 354.55 61.75
LAL-R 495.65 55.5 629.2 714.25 1191.3 786.05 441 63.8
LAL-I 496.45 59.35 581.5 710.25 1183.6 794.15 434.85 65.15
MinExp 510.2 59 640 474.9 747.4 1181.7 630.15 73.8
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We repeated all experiments using an SVM classifier, utilizing an implementation pro-
vided by the  scikit-learn library (Pedregosa et  al. 2011) with the following parameters: 
class_weight =’balanced’ and C=0.1. As an alternative to majority voting, we used the 
Dawid-Skene (DS) (Dawid and Skene 1979) strategy, a popular label fusion method that 
models each worker as a confusion matrix and uses an expectation-maximization approach 
to decide the correct label.

Results8 confirmed that the combination of humans and the machine (ML + C) outper-
forms the machine-only case (ML). For this reason, in the following, we discuss the results 
of the ML + C case only.

Table  6 shows which (classifier, AL approach) pair performs best on each data-
set in terms of Accuracy, F1, and Loss (K=100) metrics. We evaluate results in two 

Table 6  Best performance results 
in ML + C prediction Dataset F Metric

Accuracy F1 Loss (K=100)

RTE MV RF,UC
0.69

RF,UC
0.725

SVM,R
134

DS RF,UC
0.701

RF,UC
0.701

SVM,Q
184

Emotion MV SVM,Q
0.945

SVM,UC
0.599

RF,BC
4.7

DS RF,BC
0.96

RF,BC
0.96

RF,BC
4.8

Amazon-1 MV SVM,UC
0.961

SVM,UC
0.968

SVM,UC
152

DS RF,UC
0.954

SVM,UC
0.959

RF,UC
185

Amazon-2 MV SVM,UC
0.955

RF,UC
0.767

RF,UC
177

DS RF,UC
0.956

RF,UC
0.956

SVM,UC
145

Crisis-1 MV RF,R
0.866

RF,R
0.396

RF,R
1731

DS SVM,R
0.859

RF,R
0.858

RF,C
1441

Crisis-2 MV RF,UC
0.87

SVM,UC
0.865

SVM,C
172.3

DS SVM,UC
0.88

RF,UC
0.872

SVM,UC
492

Crisis-3 MV SVM,UC
0.901

SVM,UC
0.911

SVM,UC
241

DS SVM,UC
0.904

SVM,UC
0.914

RF,BC
173

Exergame MV RF,UC
0.825

RF,UC
0.845

SVM,BC
33.2

DS RF,UC
0.796

SVM,UC
0.812

SVM,BC
35.2

8 https:// tinyu rl. com/ Compa rison OfAgg Tech.

https://tinyurl.com/ComparisonOfAggTech
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different conditions; when we aggregate votes using (i) majority voting (MV), and (ii) 
Dawid&Skene (DS). Results show that this pair may change even on the same dataset with 
respect to the metric used. For example, when we look at the Crisis-1 dataset random sam-
pling with SVM classifier and DS label fusion method performs best in terms of accuracy 
while uncertainty sampling with RF classifier is the best in terms of F1 score.

Summing up, these results suggest that the performance that AL strategies exhibit in 
standard settings cannot be directly transferred to hybrid classification problems. Many fac-
tors that may affect the behavior of an AL approach, such as the machine classifier being 
used, the amount of labeling noise in the data, the characteristics of the problem, and the 
label fusion method. For example, when we look at the F1 scores in Tables 2 and 3, we see 
that uncertainty sampling is not the best method for Emotion, Amazon-2 (in Scenario 1), 
and Crisis-1 datasets. These three datasets are the most unbalanced datasets we used. In 
addition, the noise level in Emotion and Crisis-1 datasets are very high (please see Fig. 2). 
These observations show that uncertainty sampling performs best when the dataset is bal-
anced and the noise level of the data is low.

4  Conclusions and open issues

In this paper, we first reviewed the existing AL approaches under three categories: (i) fixed-
strategy approaches, (ii) dynamic-strategy approaches, and (iii) strategy-free approaches. 
We then investigated the performance of a set of representative approaches for different 
strategies in the hybrid human–machine classification setting. The aim was to discover if 
and how the performance of the existing approaches can be transferred into the hybrid clas-
sification context.

Experimental results showed that as expected, hybrid human–machine classification 
always improves over purely machine-based classification. When comparing different 
AL approaches, however, no clear winner emerges. Even a state-of-the-art meta-learning 
approach like LAL fails to show consistent improvements over the alternatives when evalu-
ated across different datasets. We observed that if we have a finite pool classification prob-
lem with noisy crowd labels (i.e. RTE, Emotion, Crisis-1, and Crisis-2 datasets), then we 
can simply start by picking the RF classifier, UC approach, and DS label fusion method 
to achieve an acceptable performance (see Table 6). In addition, if the cost of FN and FP 
errors are very different for the problem at hand, then we can consider using a BC approach 
instead of UC (see Table 4, where BC improved the performance on RTE, Emotion, and 
Exergame datasets with a big k value).

Hybrid crowd-machine classification is promising but needs more investigation. Most of 
the existing AL approaches assume that enough high-quality labeled data exist. However, 
gathering high-quality labeled data is challenging and labels, especially if crowdsourced, 
can be noisy. For this reason, we analyzed what happens if we use noisy labels instead of 
gold data in finite-pool hybrid classification problems. We have shown that in the presence 
of noisy data the conclusions from the state of the art need to be revisited and cannot be 
taken at face value when data is crowdsourced. This points to the need for further work in 
the community on what is the role of noise in the success of specific AL algorithms and 
how much noise they can tolerate before the assumptions and intuitions on which they are 
based do not hold any longer. The community also needs to analyze how different types of 
noise (i.e. random noise or biased crowdsourced answers) in data affect the performance of 
AL, and how the effect of such noise can be smoothed. Indeed, label smoothing can be a 
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promising direction to pursue as it helps to improve the calibration of ML models, which is 
central for many AL algorithms.

In addition, our analysis highlights several open issues and challenges that we believe 
can shape future research on this topic, and specifically: (i) what are the trade-offs between 
having a smaller but accurately labeled dataset vs a larger but more noisy one? (ii) Would 
a dynamic assessment of crowd accuracy help strategy-free approaches? and, (iii) How do 
we operate at the start of an AL process when we have no idea of the crowd accuracy?

Another direction is that of balancing the AL and human vs machine contribution in 
hybrid crowd-ML classification problems where the pool of items to classify is finite: here 
the challenge is deciding when to stop spending our budget for collecting samples to opti-
mize our AL process and obtain a stronger ML model, and spend the budget for classify-
ing the remaining items in the pool, by applying the current ML model and resorting to 
humans for items on which the ML model is unsure about.

In summary, this paper has pointed to several interesting research paths that we need to 
undertake if we want to address problems that companies face when developing their ML 
solutions and that are needed to make AL a mainstream part of ML pipelines.
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