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ABSTRACT
Capturing the temporal dynamics of user preferences over items
is important for recommendation. Existing methods mainly as-
sume that all time steps in user-item interaction history are equally
relevant to recommendation, which however does not apply in real-
world scenarios where user-item interactions can often happen
accidentally. More importantly, they learn user and item dynamics
separately, thus failing to capture their joint effects on user-item
interactions. To better model user and item dynamics, we present
the Interacting Attention-gated Recurrent Network (IARN) which
adopts the attention model to measure the relevance of each time
step. In particular, we propose a novel attention scheme to learn the
attention scores of user and item history in an interacting way, thus
to account for the dependencies between user and item dynamics in
shaping user-item interactions. By doing so, IARN can selectively
memorize different time steps of a user’s history when predict-
ing her preferences over different items. Our model can therefore
provide meaningful interpretations for recommendation results,
which could be further enhanced by auxiliary features. Extensive
validation on real-world datasets shows that IARN consistently
outperforms state-of-the-art methods.
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1 INTRODUCTION
Recommendation is a fundamental task to enable personalized
information filtering, thus to mitigate the information overload
problem [34]. The goal is to learn user preferences from historical
user-item interactions, based on which recommend relevant items.
In reality, user preferences often evolve over time, affected by dy-
namic user inclinations, item perception and popularity. Temporal
context therefore has been recognized as an important type of in-
formation for modeling the dynamics of user preferences. It has
extensive applications, ranging from movie recommendation [3],
music recommendation [15], to location recommendation [43].

Most existing methods [5, 15, 17, 25, 43] model the temporal
dynamics by extending the latent factor model (LFM) [31] with
handcrafted features, so as to describe certain temporal patterns
of user-item interactions. For example, they either bin user-item
interactions into time windows, assuming similar user behavioral
patterns in the same window [15, 43], or adopt a time decay func-
tion to under-weight the interactions occurring deeper into the
past [17, 25]. The handcrafted features, though proven to be ef-
fective, cannot capture complex temporal patterns in reality [39].
More importantly, these methods cannot automatically select im-
portant interaction records in user-item interaction history when
modeling user preferences. This greatly limits their application in
real-world scenarios where user-item interactions can often happen
accidentally.

Recently, recurrent neural network (RNN) [28] based methods
have emerged as a promising approach to model the temporal dy-
namics of user preferences [10, 14, 39]. RNN captures both the
latent structures in historical user-item interactions – through hid-
den units – and their dynamics along the temporal domain. Un-
like LFM based methods, these methods are nonparametric, thus
can learn inherent dynamics that are more complex and suitable
for making recommendations. A specific type of gated RNN, i.e.
Long Short-Term Memory (LSTM) [12], is employed by the state-
of-the-art recommendation method [39] to model both user and
item dynamics. The gating mechanism is adopted to balance the
information flow from the current and previous time steps, thus
can more effectively preserve historical information over time for
recommendation.

Nevertheless, LSTM models the gate w.r.t. each hidden unit in-
stead of the whole time step, making it difficult to interpret the
importance of each time step for the final recommendation. More
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Figure 1: Example of user-item interactions determined by
dependent user dynamics and item dynamics. The numbers
belowuser and itemhistory are the attention scores inferred
by our proposed model, which are used to select relevant
time steps in user and item history to accurately predict the
user’s preference over the item.

importantly, gates for modeling user dynamics and item dynamics
so far are learned separately. In real-world scenarios, however, user
and item dynamics are dependent on each other, and can jointly
affect user-item interactions. Consider the target user Bob in Fig-
ure 1, who is interested in both formal clothing (e.g., leather shoes
and trousers) and casual clothing (e.g., casual shoes and shorts),
as described by his purchasing history. We observe that Bob buys
a pair of formal jeans, which were historically bought by users
with various interests. The interaction between Bob and the formal
jeans is therefore determined by his interest in formal clothing and
the inherent property of the formal jeans, namely, the formal style.
Such an interest and property could only be learned from historical
user-item interactions when no additional auxiliary features are
given. Therefore, to accurately capture Bob’s preference over the
formal jeans, the recommendation model should be able to iden-
tify the important time steps of Bob’s purchasing history when he
bought formal clothing. Similarly, in the history of formal jeans
it should be able to identify time steps when they were bought
by users who are also interested in formal style clothing, thus to
capture the item property relevant to Bob’s interest.

In this paper, we introduce the Interacting Attention-gated Recur-
rent Network (IARN) which adopts the attention model to measure
the relevance of each time step of user history and item history
for recommendation. In particular, we propose a novel attention
scheme which allows IARN to learn the relevance – measured by
attention scores – of time steps in user and item history in an in-
teracting way, so as to capture the dependencies between user and
item dynamics in shaping user-item interactions. As a result, IARN
can selectively memorize different time steps of a user’s history
when predicting her preferences over different items, thereby pro-
viding meaningful interpretations for the prediction. For instance,
attention scores learned by IARN for the example in Figure 1 are
shown under the user and item history in the figure (note this
example is based on our results on a real-world dataset).

IARN could be further enhanced by incorporating auxiliary fea-
tures of users or items. In this paperwe providemethods to integrate
IARN with auxiliary features organized in a flat or a hierarchical
structure. More specifically, our main contributions include:
• We extend recurrent networks for modeling user and item dynam-
ics with a novel gating mechanism, which adopts the attention
model to measure the relevance of individual time steps of user
and item history for recommendation.

• We design a novel attention scheme which allows the user- and
item-side recurrent networks to interact with each other, thus
to capture the dependencies between user and item dynamics to
improve recommendation accuracy and interpretability.
• We propose the IARN method implementing the interacting
attention-gate as described above, and show how it can be further
enhanced by auxiliary features organized in different structures.
• We conduct extensive experiments to evaluate the proposed IARN
method on six real-world datasets, demonstrating that IARN
consistently outperforms state-of-the-art methods.

2 RELATEDWORK
This section provides an overview of state-of-the-art recommen-
dation methods related to our work. We review them from two
orthogonal perspectives: (1) the underlying recommendation mod-
els; (2) the incorporation of side information for recommendation.

2.1 Underlying Recommendation Models
The recently pervasive recommendation methods can be broadly
categorized into two types, namely, the latent factor model based
methods and the neural network based ones.
Latent Factor Model. Due to the high efficiency, state-of-the-art
recommendation methods have been dominated by Latent Factor
Model (LFM). It decomposes the high-dimensional user-item rat-
ing matrix into low-dimensional user and item latent matrices. A
panoply of algorithms have been proposed to date based on LFM,
including matrix factorization (MF) [18], Bayesian personalized
ranking (BPR) [27], collective matrix factorization (CMF) [32], fac-
torization machine (FM) [26], SVD++ [16], to name a few. Despite of
their success, LFM based methods suffer from the following essen-
tial limitations. First of all, they merely leverage global statistical
information of user-item interaction data, while cannot capture
fine-grained regularities in the latent factors [24]. Second, LFM
based recommendation methods generally learn latent represen-
tations of users and items in a linear fashion, which may not be
always suitable in real-world scenarios. Besides, most LFM based
methods ignore the temporal dynamics of user preferences, assum-
ing that the future user-item interactions are known in advance,
which is contradictory with the real-world application. There are a
few LFM based methods specifically designed for fusing temporal
information, which will be reviewed in section 2.2.
Neural Networks. Stemming from the success in related domains
(e.g., computer vision, speech recognition, and natural language
processing), Neural Network (NN) based methods have recently
attracted a considerable amount of interests from the recommenda-
tion community. In contrast to LFM based recommendation meth-
ods, NN based methods have shown to be highly effective in cap-
turing local item relationships by modeling item co-occurrence in
individual users’ interaction records. Typical methods are User2Vec
[6] and Item2Vec [1], which are inspired by word embedding tech-
niques [20, 21]. Furthermore, NN based models can learn nonlinear
latent representations through the activation functions (e.g., sig-
moid, ReLU [22]). For instance, Suvash et al. propose the AutoRec
[30] recommendation method based on autoencoders [11]. He et al.
propose neural collaborative filtering [9] to learn non-linear inter-
actions between users and items. Recently, the Recurrent Neural



Network (RNN) based methods [10, 13, 14, 39] have gained sig-
nificant enhancement in recommendation thanks to the ability of
preserving historical information over time for recommendation.
These methods learn time-varying representations of users/items
(i.e., hidden-states) in each time step, by taking into account both
the present and historical data. The learned states can be used for
generating recommendations for the future, therefore being more
realistic and attractive for real-world applications. To sum up, NN
based methods possess essential advantages and have shown to be
more effective to enhance recommendation performance.

2.2 Incorporating Side Information
To better model user preferences thus to further improve recom-
mendation performance, many researchers endeavor to incorporate
side information, i.e., information complementing user-item interac-
tions, into recommendation models. Here we focus on the literature
with consideration of two types of side information related to our
work, i.e., temporal context and auxiliary features.

Temporal Context. It has been well recognized that user prefer-
ences change over time. This can be due to drifting user inclinations
for item, or the constantly changing item perception and popular-
ity when new selection emerges [14, 17]. Hence, recommendation
methods that capture temporal dynamics of user preferences could
provide improved recommendation performance. In the branch of
LFM based methods, some take temporal information into consid-
eration based on time windows, assuming user-item interactions in
the same window have similar patterns. For instance, Koenigstein
et al. [15] and Yuan et al. [43] propose such methods for music
and Point-of-Interest recommendation. A disadvantage is that they
regard all interactions within the considered time window equally,
completely ignoring the relationships of interactions among differ-
ent windows. In addition, binning user-item interactions aggravates
the data sparsity problem. Some other LFM based methods attempt
to address these issues by adopting a time decay function to under-
weight the instances as they occur deeper into the past. These
include TimeSVD++ proposed by Koren [17] and HeteRS proposed
by Pham et al. [25]. However, these methods could not capture
other types of temporal patterns, e.g., certain user-item interactions
could be driven by the long-term interest of a user which could
not be modeled in a decay manner. In fact, all LFM based methods
handle temporal context by creating handcrafted features, thus
cannot capture complex temporal patterns in reality.

Contrarily, RNN based methods are nonparametric, thus can
learn inherent dynamics of user preferences that are more complex.
For instance, Hidasi et al. [10] propose a RNN based approach for
session-based recommendation. Hosseini et al. [13] introduce a
recurrent Poisson factorization framework for recommendation.
Among different RNN models, Long Short-Term Memory (LSTM)
[12] has gained much popularity in recommendation due to their
capability in dealing with the gradient vanishing problem [44]. Jing
et al. [14] present a LSTM basedmethod to estimate when a user will
return to a site and what her future listening behavior will be. Wu et
al. [39] propose a LSTM based method, i.e., recurrent recommender
network (RRN), to model user and item dynamics. This is the most
closely related work to ours. However, one major shortcoming
of these gated RNN based methods is that the learned gate lacks

interpretability, limiting further improvements of recommendation
accuracy. More importantly, these methods model user and item
dynamics separately, thus failing to capture their dependencies and
their joint effects on user-item interactions.

Motivated by the attention scheme in human foveal vision, at-
tention mechanism has been employed by NN based methods to
cope with the data noisy problem by identifying relevant parts of
the input for the prediction task. It has been applied in a broad
spectrum of disciplines, from natural language processing [42] to
computer vision [23, 40]. However, how to effectively exploit the
attention mechanism in recommender systems is still an open re-
search question. To the best of our knowledge, we are the first to
propose recurrent network based recommendation method that in-
tegrates attention mechanism to automatically learn the relevance
of individual time steps for recommendation, so as to enhance both
recommendation interpretability and accuracy. More importantly,
we design a novel attention scheme that allows user- and item-side
recurrent networks to interact with each other, thus to capture
the dependencies between user and item dynamics and their joint
effects on user-item interactions.

Auxiliary Features. Better representations of users and items can
also be obtained by incorporating auxiliary features into recommen-
dation, due to the rich semantic information encoded by them. Most
existing feature-based recommendation approaches are built upon
LFM. These methods are either designed to incorporate features in
a flat structure or a hierarchy. For instance, the popular CMF [32]
and FM [26] are designed for integrating flat features into recom-
mendation. Recently it has been found that feature hierarchies, i.e.,
hierarchically organized features, can be more effective in boosting
the accuracy as well as the interpretability of recommendation.
He et al. [8] devise a visually-aware recommendation model by
manually defining the feature hierarchy influence on items. Yang
et al. [41] design a recommendation method that automatically
learns feature hierarchy influence on user/item by a parameterized
regularization traversing from root to leaf features. More recently,
Sun et al. [35] introduce a unified recommendation framework that
seamlessly incorporates both vertical and horizontal dimensions
of feature hierarchies for effective recommendation. In this paper,
we show how to incorporate features organized in both flat and
hierarchical structures into our model. Note that although in other
domains like nature language processing, a few work [42] attempts
to integrate hierarchies into RNN model, there is few such kind of
approach in recommendation. Hence, we are the first to explore the
effect of features organized in different structures together with
recurrent networks to learn optimal representations of users and
items for improved recommendation interpretability and accuracy.

3 INTERACTING ATTENTION-GATED
RECURRENT NETWORKS

Given the historical user-item interaction data as the input, we aim
to learn high-quality hidden representations for both users and
items, which are then used for subsequent recommendation. The
extracted representations are expected to: 1) capture the temporal
dynamics contained in both user and item history with physical
interpretability of each time step; 2) learn the dependencies be-
tween user and item dynamics in shaping user-item interactions; 3)
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Figure 2: Architecture of IARN. Two recurrent networks are employed to learn hidden representations of users and items. Each
recurrent network is composed of an Attention-gated Recurrent Module to capture the user/item dynamics, an Interacting
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with each other to learn the dependencies between user and item dynamics.

extract semantically rich information from training data through
the incorporation of auxiliary features. To achieve these goals, we
propose the Interacting Attention-gated Recurrent Network (IARN),
which is composed of three modules: Attention-gated Recurrent
Module, Interacting Attention Module and Feature Encoder. They
are designed correspondingly to the three aforementioned goals.

The overall architecture of IARN is illustrated in Figure 2. It
employs two recurrent networks to learn compact and effective hid-
den representations for the paired user and item, respectively. Each
recurrent network is composed of an Attention-gated Recurrent
Module, an Interacting Attention Module, and a Feature Encoder.
Instead of behaving independently, the two recurrent networks
interact with each other to model the dependencies between user
and item dynamics.

Input and Output Layers.We first describe the input and output
layer of IARN, then in the following subsections we will elaborate
on the three modules in a top-down fashion to explain step by step
how the input and output layers are connected to achieve our goal.

Let U and V be the user and item set, respectively. As input,
each user i ∈ U is described by a sequence xi , which contains
the representations (e.g., the embeddings) of all the items rated
by her, ordered by the rating time. Similarly, each item j ∈ V
is described by a sequence xj that contains the representations
of all users who have rated the item, ordered by the rating time.

Through the three modules, IARN learns from xi and xj the hidden
representation of user i , denoted by ũi , and the hidden representation
of item j, denoted by ṽj . ũi and ṽj are then used to predicted user
i’s preference rating r̃i j over item j via an inner product operation:

r̃i j = ⟨ũi , ṽj ⟩ (1)

3.1 Attention-gated Recurrent Module
In order to learn high-quality hidden representations ũit and ṽjt ,
we propose the Attention-gated Recurrent Module to preserve the
information of previous time steps with relevance modeled by at-
tention scores, which are obtained by the Interactive Attention
Module that will be present in section 3.2. Specifically, we construct
two attention-gated recurrent modules for the paired user and item,
respectively. It should be noted that these two modules do not share
parameters, since users and items are not expected to share simi-
lar hidden representations. This makes our method different from
Siamese Network [4], a well-known method for object comparison.

Both user- and item-side Attention-gated Recurrent Modules
contain two layers, namely, a recurrent layer and a fully-connected
layer. The recurrent layer models the temporal dynamics of users
and items as hidden-states, while the fully-connected layer trans-
form the hidden-states of users and items in the last time step
to the hidden representations for prediction. We first describe the
full-connected layer, then introduce in detail the recurrent layer.



User- and Item-Side Fully-Connected Layers. Denote the last
hidden-states of user- and item-side recurrent layers as uiTi and
vjTj , respectively. The hidden representations ũi and ṽj are trans-
formed from these hidden-states by non-linear transformations:




ũi = д(W̃u · uiTi + b̃u )
ṽj = д(W̃v · vjTj + b̃v )

(2)

Herein, W̃u and W̃v are linear transformation parameters of the
user- and item-side layers, respectively; b̃u and b̃v are the bias
terms; д is the activation function, for which we use the Parametric
Rectified Linear Unit (PReLU) [7]. PReLU allows the output of the
unit to be either positive or negative, thus is more suitable for
representing users/items – intuitively, a user could either like or
dislike certain types of items (e.g., action movies), and an item could
either be of a specific type or not.
User-Side Attention-gated Recurrent Layer. Given the user i
whose corresponding input sequence is xi = {xi1, xi2, . . .}. We
denoted the attention score at time step t by ait , which is a scalar
value between [0, 1] inferred by the Interacting Attention Module.
The hidden-state of user i at time t is then modeled as

uit = (1 − ait ) · ui (t−1) + ait · u′it (3)
where ui (t−1) is the hidden-state in the previous time step and u′it
is the candidate state value obtained by fully incorporating the
input at the current time step:

u′it = д(Wu · ui (t−1) + Hu · Eu (xit ) + bu ) (4)

where Wu and Hu are respectively the linear transformation pa-
rameters for the previous and current time steps; bu is the bias term;
and Eu (·) is the Feature Encoder that transforms the original user
sequence by considering auxiliary features, which will be detailed
in section 3.3. We use ReLU for the activation function д.

Equation 3 balances the contributions of the input of the cur-
rent candidate hidden-state and the previous hidden-state with
an attention gate described by the attention score ait . Attention
gates with high scores will focus more on the current input than
previous hidden-states, while recurrent gates with low attention
scores will ignore the current input and inherit more information
from previous time steps. The attention score therefore quantifies
the importance of individual time steps in the final prediction.
Item-Side Attention-gated Recurrent Layer. Similarly, for the
item-side recurrent layer, we model the the hidden-state as follows




vjt = (1 − ajt ) · vj (t−1) + ajt · v′jt
v′jt = д(Wv · vj (t−1) + Hv · Ev (xjt ) + bv )

(5)

where xjt is the input of item j at time t ; Wv , Hv , and bv are
the network parameters; ajt is the attention score that serves as
attention gate; and Ev (·) is the Feature Encoder for transforming
item sequences, introduced in section 3.3.

3.2 Interacting Attention Module
We propose the Interacting Attention Module for both users and
items to measure the saliency and relevance of the input in each
time step to rating prediction. The key point in this module is that
the inferred attention score should not only consider the current
time step in the sequence on its own side, but also take into account

the information of the other side so as to model the interacting
dependency between the paired user and item.
User-Side Interacting Attention Module. To maximize the util-
ity of the input sequence, we model the saliency score based on both
the input observation at the current time step and the information
from neighboring observations in both directions. This is achieved
by using a bi-directional RNN [29], which includes a forward layer
and a backward layer, as depicted in Figure 2. The attention score
ait at time step t in Equation 3 on the user side is modeled as:

ait = σ (Mu
⊤ · tanh(Lu · (

→
u it ;

←
u it ;

→
v jTj ;

←
v j1) + b

′
u ))) (6)

Wherein a two-layer network is used to calculate the attention score:
Lu is a matrix as the parameter of the fusion layer that fuses both
directional layers of our bi-directional RNN; b ′u is the bias term of
the fusion layer; andMu is the weight vector of the second layer; σ
is sigmoid function applied as the activation function to control the
attention score to lie between [0, 1]; (; ) denotes the concatenation
among vectors; →u it and

←
u it perform as the summary of context

information around time step t in the user sequence xi . Specifically,

→
u it = д(

−→
Wu · Eu (xit ) +

−→
Hu ·

→
u i (t−1) +

→

b u )

←
u it = д(

←−
Wu · Eu (xit ) +

←−
Hu ·

←
u i (t+1) +

←

b u )

(7)

Therefore, →u it summarizes the sequence from the beginning to
time t , while ←u it summarizes the sequence from the end to time t .

Similarly, →v jTj
←
v j1 in Equation 6 are the summary of the paired

item sequence xj , whose calculation will be introduced later in
detail by Equation 9. They are concatenated together with the sum-
mary of the user-side sequence, and used as input of the fusion
layer. In this way, the resulting attention score ait is used to char-
acterize the relevance of the current time step t of user sequence
xi conditioned on the paired item sequence xj .
Item-Side Interactive Attention Module. Similarly, for item-
side, we have

ajt = σ (Mv
⊤ · tanh(Lv · (

→
v jt ;

←
v jt ;

→
u iTi ;

←
u i1) + b ′v ))) (8)

where Lv ,b ′v are the parameters of the fusion layer, and Mv is
the weight vector of the second layer; →v jt and

←
v jt perform as the

summary of the context information around time step t in the item
sequence xj :

→
v jt = д(

−→
Wv · Ev (xjt ) +

−→
Hv ·

→
v j (t−1) +

→

b v )

←
v jt = д(

←−
Wv · Ev (xjt ) +

←−
Hv ·

←
v j (t+1) +

←

b v )

(9)

The summary of user sequence, i.e., →u iTi
←
u i1, are taken as input

for modeling the attention score ajt , so as to condition the learning
of ajt on the paired user sequence xi .

By modeling the attention of each time step in both the user-
and item-side networks, our method can capture the interacting
dependency and the joint effects of user and item dynamics on user
preferences. It thus enable us to gain “second order” insights such
as how user preferences are determined by the dynamics of user
inclinations and the change of item perception/popularity together.



3.3 Feature Encoder
We now introduce Feature Encoder, which is used to extract seman-
tically rich information from the input data for learning high-quality
hidden-states. Here we focus on Feature Encoder for processing
item-side input, as features of items are in generally richer than
users (e.g., the datasets we will take for validation in section 4).
It is however non-trivial to adapt our method for processing the
user-side input when auxiliary features of users are given.

We consider two structures of feature organizations, namely, flat
structure and hierarchy. Formally, let F denote the set of features
organized in a flat structure or a hierarchy. Each item j ∈ V is
affiliated with a subset of features F (j ) = { f 1j , f

2
j , . . . , f

L
j }. The

effect of feature f kj is modeled as a linear transformation function,
denoted by Mk

j , that projects the input xjt for all 1 ≤ t ≤ Tj to a
new space determined by the feature (i.e., the column space of Mk

j )

Mk
j · xjt (10)

The problem is how to combine the effects of different features
of F (j ) to project the input for best learning the hidden-states.
Considering feature organizations, we design our Feature Encoder
as follows.

Flat Feature Encoder. In the case when features are organized
in a flat structure, we simply add the effects of different features
together. Formally, for the input xjt , the combined effects of all
affiliated features F (j ) are given by

Ev (xjt ) =
∑L

k=1
Mk
j · xjt (11)

Hierarchical Feature Encoder. In the case when F (j ) is a feature
hierarchy, let f 1j be the feature in the leaf layer and f Lj be the
root feature. Intuitively, features in top-layers (close to root in the
hierarchy) provide more general description of the item, while those
in bottom-layers (close to the leaf layer in the hierarchy) provide
more refined description. Inspired by the recursive nature of a
hierarchy, we consider the recursive parent-children relationships
between features in connected layers from the root to leaf layer. In
every two connected-layers, the input will be first projected by the
parent feature, then by the child feature. By doing so, they will be
first mapped to a more general feature space, and then mapped to a
more semantically refined feature space. The effects of all affiliated
features in different layers will be combined recursively, such that
the input can be sequentially mapped to more refined spaces.

Formally, for the input xjt , the combined effects of all affiliated
features F (j ) are given by

Ev (xjt ) = (M1
j · (M

2
j . . . · (M

L
j · xjt ) . . .)) =

∏L

k=1
Mk
j · xjt (12)

3.4 End-to-End Parameter Learning
Given the training data Dtrain containing N instances in the form
of (i, j, ri j , timestamp), IARN learns the involved parameters by
minimizing the mean squared error loss function:

J =
1
N

∑
ri j ∈Dtrain

(r̃i j − ri j )
2 (13)

Since all the modules and the above loss function are analytically
differentiable, IARN can be readily trained in an end-to-end man-
ner. In the learning process, parameters are updated by the back-
propagation through time (BPTT) algorithm [38] in the recurrent
layers of the Attention-gated Recurrent Module and the Interacting
Attention Module, and by normal back-propagation in other parts.
We use RMSprop [36] to adaptively update the learning rate, which
has proven to be highly effective for training neural networks. To
prevent over-fitting, we use dropout [33] to randomly drop hidden
units of the network in each iteration during the training process.

3.5 Comparison with Recurrent Network based
Methods

Comparison with RNN- and LSTM-backbone. One could ar-
gue that our framework can also employ two RNN or LSTM as the
backbone for user- and item-side recurrent networks. However, the
major downside of RNN- and LSTM-backbone is two-fold. First,
RNN- and LSTM-backbone cannot provide interpretable recommen-
dation results either due to the lack of gates (RNN-backbone), or the
gates modeled as multi-dimensional vectors (LSTM-backbone). In
contrast, gates in IARN are represented by attention scores in scalar
values, therefore IARN can provide meaningful interpretations on
the relevance of each time step for recommendation. Second, RNN-
or LSTM-backbone models user dynamics and item dynamics sep-
arately, thus can only learn fixed attention scores for each user
and item. The attention scores for a specific user (item) actually
indicate the general importance (e.g., the frequency) of each item
(user) in purchased history of this user (item), which may not be
effective in predicting specific user-item interactions. Unlike them,
the novel attention scheme designed for IARN can learn different
attention scores for an individual user (item) when interacting dif-
ferent items (users), thus can model the dependencies between user
and item dynamics. In addition to the above, when compared with
LSTM-backbone, IARN has less parameters, so is less prone to be
over-fitting. Moreover, IARN uses the bi-directional recurrent net-
work to model attention gates, which helps to maximize the utility
of the input data.

Comparison with TAGM. IARN is inspired by the Temporal At-
tention Gated Model (TAGM) [23] recently proposed for sequence
classification. IARN inherits the bi-directional attention gates from
TAGM, however, our attention scheme is specifically designed with
the purpose of recommendation in mind. The nature of recommen-
dation requires proper modeling user-item interactions, for which
we design the Interacting Attention Module for modeling the in-
teracting attention for both users and items. This allows IARN to
capture the dependencies between user and item dynamics, making
IARN particularly suitable for modeling user-item interactions.

4 EXPERIMENTS AND RESULTS
In this section, we conduct experiments to evaluate the performance
of IARN on six real-world datasets. We aim to answer the following
research questions: (1) How do the interacting attention scheme
and feature encoder of IARN contribute to recommendation perfor-
mance and interpretability? (2) How effective is IARN compared to
state-of-the-art recommendation methods in both rating prediction



Table 1: The statistics of datasets, where #U_av_T (#I_av_T)
is the average length of sequences w.r.t. users (items);

Datasets #User #Item #Rating #Feature #U_av_T #I_av_T

Netflix 17,043 9,598 721,017 – 36.45 64.73
MovieLens 9,737 5,121 316,891 19 31.07 59.08
Electronic 11,117 15,985 136,998 590 11.35 7.89
Home 15,745 19,383 201,660 883 11.62 9.44
Clothing 19,939 20,785 135,128 690 6.07 5.82
Sport 11,723 13,811 127,178 1,130 9.82 8.33

and personalized ranking? They will be addressed by section 4.2
and section 4.3, respectively.

4.1 Experimental Setup
Datasets. To evaluate the effectiveness of IARN, we utilize six real-
world datasets, namely Netflix prize dataset, MovieLens, and four
Amazon Web store datasets introduced by McAuley et al. [19], i.e.,
Electronic, Home, Clothing, Sport. Each data point in these datasets
is a tuple – (user id, item id, rating, time stamp). Specifically, the
Netflix dataset is a large movie rating dataset scaled from 1 to 5
with a step size of 1, which is collected between November 1999
to December 2005. MovieLens is also a personalized movie rating
dataset collected from September 1995 to March 2015 with ratings
ranging from 0.5 to 5.0 with a step size of 0.5. Besides, it also contains
for each movie the genre information as features in a flat structure.
The AmazonWeb store datasets are collected from Amazon1, which
is a large on-line shopping website, including electronics, clothing,
etc. The time span is fromMay 1996 to July 2014. In addition, there is
an item category hierarchy associated with each of the four datasets.
We sample the datasets such that only users and items with more
than 3 ratings are preserved. Table 1 summarizes the statistics of
all the considered datasets.
Comparison Methods.We compare with the following state-of-
the-art algorithms, 1) MF [18]: matrix factorization as the basic
latent factor model (LFM) aiming at rating prediction; 2) BPR [27]:
Bayesian personalized ranking as the basic LFM designed for item
ranking; 3) TimeSVD++ [17]: LFM with the incorporation of tem-
poral context; 4) HieVH [35]: LFM integrating feature hierarchies;
5) Item2Vec [1]: the basic neural network (NN) model; 6) NCF
[9]: neural collaborative filtering replacing the inner product with
non-linear network layers for item ranking; 7)MP2Vec [37]: NN
model considering auxiliary features. Note that methods designed
for incorporating feature hierarchies can also handle features in a
flat structure, by considering all features in the same level; similarly,
methods designed for incorporating features in a flat structure can
also handle feature hierarchies by flattening them into flat struc-
tures, with the loss of certain structural information.

To investigate the effect of attention-gates and our novel atten-
tion scheme, we also compare the following IARN variants using
different recurrent networks as the backbone, a) RNN-backbone:
the basic variant using RNN as the backbone of user- and item-
side recurrent neural networks; b) LSTM-backbone: the variant
using LSTM as the backbone; c) TAGM-backbone: the variant
using TAGM as the backbone; d) IARN-Plain: the variant of our
1https://www.amazon.com/

proposed attention-gated recurrent networks integrated with the
interacting attention scheme; e) IARN: the upgraded version of
IARN-Plain by fusing auxiliary features. Note that LSTM-backbone
is similar to [39] which also employs LSTM as the backbone; while
TAGM-backbone is a completely newmethodwhich is adapted from
TAGM for recommendation. Given their same goal in modeling
temporal dynamics, we compare them together.
Evaluation Metrics. We adopt Root Mean Square Error (RMSE)
and Area Under the ROC Curve (AUC) to measure the performance
of rating prediction and personalized ranking, respectively. The
smaller RMSE and the larger AUC, the better the performance. We
split all the datasets into training and test data according to the
following time stamps: June 1st, 2005 for Netflix dataset; January
1st, 2010 for MovieLens dataset; and January 1st, 2014 for the four
Amazon datasets. The data before these time stamps are treated as
training data, while the rest are considered as the test data.
Parameter Settings. We empirically find out the optimal parame-
ter settings for each comparison method. For all the methods, we set
the dimension of the latent factor d = 25 on Netflix and MovieLens
datasets, and d = 50 on the four Amazon datasets. We apply a grid
search in {10−5, 10−4, 10−3, 10−2, 10−1} for the learning rate and reg-
ularization coefficient. For TimeSVD++, decay_rate = 0.4;bin = 30.
For HieVH, α = 0.01. For MP2Vec, α = 0.1. For all recurrent net-
works mentioned in this work (RNN-backbone, LSTM-backbone,
TAGM-backbone, IARN) as well as NCF, the number of hidden
units is set to 64 which is selected as the best configuration from
the option set {32, 64, 128} based on a held-out validation set. To
avoid potential over-fitting, the dropout value is validated from the
option set {0.00, 0.25, 0.50}. Model training is performed using a
RMSprop stochastic gradient descent optimization algorithm with
mini-batches of 50 pairs of user-item interactions. All the gradients
are clipped between -10 and 10 to prevent exploding [2].

4.2 Effects of Attention and Feature Encoder
Attention. In order to investigate the impact of the proposed at-
tention scheme, we compare the performance (measured by RMSE)
of IARN-Plain with different recurrent networks as the backbone,
including RNN-backbone, LSTM-backbone, and TAGM-backbone.
To understand their capability in modeling temporal dynamics of
users and item history in different lengths, we test their perfor-
mance on different configurations of the datasets by constraining
the minimum length of user and item input sequences. A grid search
in {3, 10, 20, 30, 50, 100} is applied for the minimum length of se-
quences on all the datasets, excluding Clothing and Sport since
there are few users possessing long length sequences in these two
datasets. Due to space limitation, we only show the results on four
Amazon datasets as depicted by Figure 3, however similar observa-
tions as below can be obtained on all the datasets.

As the minimum length of input sequences increases, the perfor-
mance of all methods generally improves, indicating that sufficient
temporal context could ensure recurrent network based methods to
better model the dynamics of user preferences. The performance of
gated recurrent networks, i.e., LSTM-backbone, TAGM-backbone,
and IARN-plain, is generally better than the non-gated recurrent
network, i.e., RNN-backbone. Such a difference is minor when the
minimum sequence length is less than a threshold (e.g., 30), and
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Figure 3: Performance (measured by RMSE) of IARN variants with different recurrent networks as the backbone on different
configurations of the real-world datasets with varying minimum sequence lengths.
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Figure 4: Performance of rating prediction of IARN variants
with and without feature encoder on the five datasets.

becomes significant with the further growth of the sequence length.
This shows the benefit of gating mechanism in effectively preserv-
ing historical information deep into the past for recommendation.
The observation further explains the close performance of differ-
ent methods on Clothing dataset, whose sequences are mostly less
than 30 and the average sequence length (i.e., around 6, Table 1) is
significantly smaller than all the other datasets.

The overall performance of TAGM-backbone and IARN-Plain, is
better than that of LSTM-backbone. LSTM-backbone adopts multi-
dimensional gates w.r.t. each hidden unit, which can be more easily
over-fitted than the (bi-directional) attention-gates employed by
TAGM-backbone and IARN-Plain. With respect to attention-gated
recurrent networks, IARN-Plain outperforms TAGM-backbone across
all different configurations of minimum sequence length. This is
mainly due to the fact that TAGM-backbone learns user and item
dynamics separately, i.e., only fixed attention scores for user his-
tory and item history are learned (LSTM-backbone suffers from the
same issue). Whereas equipped with our novel attention scheme,
IARN-Plain can adaptively learn different attention scores for user
(item) history when the user (item) interacts with different items
(users). Such a comparison clearly shows the advantage of our pro-
posed attention scheme for modeling the dependencies between
user and item dynamics.

Overall, IARN-Plain achieves the best performance across all
different configurations of all the datasets, especially when the
sequence length gets larger. On average, the relative improvements
w.r.t. the second best method are 2.54% with minimum length = 50
and 11.65% with minimum length = 100. This implies the remark-
able advantage of IARN-Plain in dealing with long sequences.
Feature Encoder.We further examine the effectiveness of auxil-
iary features which are organized in either a flat or hierarchical
structure on all the datasets, excluding Netflix which does not con-
tain any auxiliary features. The results are given by Figure 4. By
integrating auxiliary features IARN outperforms IARN-Plain across

all the datasets, with 1.19% lift (p-value < 0.01) in RMSE on average.
This clearly indicates the benefit of considering feature encoder in
our proposed IARN approach.
Interpretation by IARN. The attention scores learned by IARN
for individual time steps in user and item history can help quantify
the relevance of each time steps in user and item history for recom-
mendation. We now qualitatively analyze such attention scores to
investigate their effects on providing meaningful interpretations
for recommendation. Figure 5 shows the attention scores learned
by IARN on examples of four datasets.

In each of the four examples, we can observe varying attention
scores assigned to different time steps in both user and item his-
tory. Such attention scores can effectively capture the target user’s
preference related to the inherent property of the target item, as
inferred from the data. For example in MovieLens dataset, IARN
learns high attention scores for the time steps in user history when
the user was watching movies of genre “Adventure” and “Action”.
These time steps are highly indicative of his potential preference
over the target item, i.e., “The Lost World: Jurassic Park”. In con-
trast, low attention scores are assigned to those time steps when
he was watching movies of other genres, e.g., “Drama”. IARN thus
can selectively memorize most relevant time steps of the user’s
history in predicting his preference over the target item. Similarly,
IARN can also select the most relevant time steps in item history
to characterize the inherent genre of the item, i.e., those time steps
when it was being watched by users who share the same interest as
the target user, i.e., “Adventure” and “Action” movies (e.g., “Aliens”).
Similar observations can be noted in the other three examples. For
instance in the Sport dataset, IARN can infer the most relevant time
steps in the user history when the user bought hiking related item;
and in the item history when the item was bought by users who
like hiking. Such dependency between the relevance of time steps
in user history and in item history is highly useful for discovering
the link between the target user and item, and thus provides strong
interpretations for the recommendation results.

4.3 Comparative Results
Rating Prediction. The left side of Table 2 presents the rating pre-
diction performance on the six real-world datasets. BPR, Item2Vec,
NCF, and MP2Vec are excluded since RMSE cannot be applied to
these methods. BPR and NCF optimize ranking based objective
function. Item2Vec and MP2Vec learn the embeddings of items
and then adopt the similarity score between item embeddings to
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Figure 5: Examples of attention scores learned by IARN. The target user and item in each sub-figure have an observed interac-
tion. The attention scores of individual time steps are shown under user and item history.

Table 2: Performance of rating prediction (measured byRMSE) and personalized ranking (measured byAUC) of all comparison
methods on the six real-world datasets. The best performance is boldfaced; the runner up is labeled with “*”. The results of
HieVH and MP2Vec on Netflix is not available (marked by “–”) due to the lack of feature information in the Netflix dataset.

Datasets Rating prediction: RMSE Personalized ranking: AUC
MF TimeSVD++ HieVH IARN MF BPR TimeSVD++ HieVH Item2Vec NCF MP2Vec IARN

Netflix 1.1828 1.1243* – 1.0582 0.6147 0.7414 0.6289 – 0.7642 0.7654* – 0.7901
MovieLens 1.1319 1.0623 1.0326* 0.9622 0.6305 0.6971 0.6504 0.7214 0.7130 0.7128 0.7135* 0.7135*
Electronic 1.3213 1.3152 1.1694* 1.0970 0.5757 0.6699 0.5820 0.7257* 0.6794 0.7052 0.7072 0.7359
Home 1.2010 1.1974 1.1231* 1.0419 0.5305 0.6341 0.5520 0.7132* 0.6902 0.6973 0.7007 0.7210
Clothing 1.3587 1.2851 1.2283* 1.0998 0.5092 0.6246 0.5205 0.7011 0.6717 0.6720 0.6919 0.7004*
Sport 1.2021 1.1690 1.1279* 0.9597 0.5489 0.6492 0.5515 0.6962* 0.6787 0.6759 0.6792 0.6975

predict recommendations, instead of minimizing the difference be-
tween the real ratings and the estimated ratings. Several interesting
observations can be obtained.

It is unsurprising that MF – as the basic LFM – considering no
auxiliary information, performs the worst among all the considered
methods. By integrating temporal context into LFM, TimeSVD++
outperforms MF. This confirms that modeling temporal dynamics
of user preferences can significantly improve the recommendation
performance. HieVH is also a LFM based approach, which takes into
account the influence of both vertical and horizontal dimensions
of feature hierarchies on recommendation. It outperforms MF, and
even slightly exceeds TimeSVD++, confirming the effectiveness of
auxiliary features for better recommendation.

Our proposed approach – IARN, consistently outperforms the
other methods in the comparison pool, with an average perfor-
mance gain (w.r.t. the second best method) of 8.58% on RMSE. Pair-
wised t-test demonstrates that the improvements of IARN on all
the datasets are significant (p−value< 0.01). Such big enhancement
clearly shows the effectiveness of the integration of interacting
attention scores as well as auxiliary features.

Ranking Performance.We further evaluate the ranking quality
of items recommended by the methods in the comparison pool. Re-
sults are shown on the right side of Table 2. A number of meaningful
findings can be noted from the table.

In terms of the LFM based methods, TimeSVD++ and HieVH
outperform MF by taking temporal context and feature hierarchies
into account, respectively. This observation further verifies the
usefulness of the two types of side information for better recom-
mendations. For NN based method, the fact that the performance
of MP2Vec is better than that of Item2Vec and NCF also helps to
reach the same conclusion, as MP2Vec considers auxiliary features
while Item2Vec and NCF do not. The superior performance of NCF
over Item2Vec shows the effectiveness of hidden layers in neural
networks for modeling non-linear user-item interactions. In both
LFM based methods and NN based methods, those specifically de-
signed for personalized ranking, i.e., BPR and NCF, perform better
than methods for rating prediction, i.e., MF and Item2Vec, which
strongly confirms the conclusion that methods designed for person-
alized ranking are more efficient than rating prediction methods
for the item ranking problem [27].



Our proposed approach IARN generally achieves the best perfor-
mance on item ranking when compared with the other considered
methods. This demonstrates the effectiveness of IARN in model-
ing user and item dynamics for improving recommendation per-
formance. However, the performance improvements of IARN on
ranking prediction is far behind those on rating prediction. The
underlying explanation is that the objective function of IARN aims
to minimize the squared error between the observed ratings and the
estimated ratings, which is just in accordance with the definition
of RMSE. IARN is therefore more effective on rating prediction. We
leave it as future work the improvement of IARN on item ranking.

5 CONCLUSIONS
User preferences often evolve over time, thus modeling their tempo-
ral dynamics is essential for recommendation. This paper proposes
the Interacting Attention-gated Recurrent Network (IARN) to ac-
commodate temporal context for better recommendation. IARN can
not only accurately measure the relevance of individual time steps
of user and item history for recommendation, but also capture the
dependencies between user and item dynamics in shaping user-item
interactions. We further show that IARN can be easily integrated
with auxiliary features for enhanced recommendation performance.
Extensive validation on six real-world datasets demonstrates the
superiority of IARN against other state-of-the-art methods. For fu-
ture work, we intend to further improve the effectiveness of IARN
on the item ranking problem.
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