
Notes on Low-rank Matrix Factorization

Yuan Lu, Jie Yang*
{joyce.yuan.lu,yangjiera}@gmail.com.

* Faculty of EEMCS,
Delft University of Technology,

Mekelweg 4, 2628 CD Delft, the Netherlands.

Dedicated to Xiao Baobao and Tu Daye.

1 Introduction

Low-rank matrix factorization (MF) is an important technique in data sci-
ence. The key idea of MF is that there exists latent structures in the data,
by uncovering which we could obtain a compressed representation of the data.
By factorizing an original matrix to low-rank matrices, MF provides a unified
method for dimesion reduction, clustering, and matrix completion.

MF has several nice properties: 1) it uncovers latent structures in the data,
while addressing the data sparseness problem [11]; 2) it has an elegant prob-
abilistic interpretation [15]; 3) it can be easily extended with domain specific
prior knowledge (e.g., homophily in linked data [19]), thus suitable for vari-
ous real-world problems; 4) many optimization methods such as (stochastic)
gradient-based methods can be applied to find a good solution.

In this article we review several important variants of MF, including:

• Basic MF,

• Non-negative MF,

• Orthogonal non-negative MF.

As can be seen from their names, non-negative MF and orthogonal non-negative
MF are variants of basic MF with non-negativity and/or orthogonality con-
straints. Such constraints are useful in specific senarios. In the first part of
this article, we introduce, for each of these models, the application scenarios,
the distinctive properties, and the optimizing method. Note that for the opti-
mizing method, we mainly use the alternative algorithm, as similar to [4, 19].
We will derive the updating rules, and prove the correctness and convergence.
For reference, matrix operation and optimization can be referred to [2] and [1]
respectively.

By properly adapting MF, we can go beyond the problem of clustering and
matrix completion. In the second part of this article, we will extend MF to
sparse matrix compeletion, enhance matrix compeletion using various regular-
ization methods, and make use of MF for (semi-)supervised learning by intro-
ducing latent space reinforcement and transformation. We will see that MF is
not only a useful model but also as a flexible framework that is applicable for
various prediction problems.

2 Theory

This section introduces the theory in low-rank matrix factorization. As intro-
duced before, we will go through the following three MF variations: basic MF,
non-negative MF, orthogonal non-negative MF.

3

2.1 Basic MF

We start with the basic MF model, formulated as

min
U,V
‖X−UVT ‖+ L(U,V), (1)

where X ∈ Rm×n is the data matrix to be approximated, and U ∈ Rm×k,V ∈
Rn×k are two low-dimensional matrices (k � min(m,n)). L(U,V) is a regular-
ization part to avoid overfitting. Regularization is usually necessary in predic-
tion for bias-variance trade-off [9].

2.1.1 Gradient Descent Optimization

We instantiate Eq. 1 as follows

min
U,V
O = ‖X−UVT ‖2F + α‖U‖2F + β‖V‖2F . (2)

The reason of using Frobenius Norm is that it has a Guassian noise inter-
pretation, and that the objective function can be easily transformed to a matrix
trace version:

min
U,V
O = Tr(XTX+VUTUVT −2XTUVT) +αTr(UTU) +βTr(VTV). (3)

Here the matrix calculation rule ‖A‖F =
√
Tr(ATA) is used in the trans-

formation. Note that trace has many good properties such as Tr(A) = Tr(AT)
and Tr(AB) = Tr(BA), which will be used in the following derivations.

According to trace derivatives ∂Tr(AB)
∂A = BT and the following rules:

∂Tr(ATAB)

∂A
= A(BT + B),

∂Tr(AATB)

∂A
= (BT + B)A

(4)

(see more in [2]), we have the following derivatives for U and V,

∂O
∂U

=
∂Tr(VUTUVT − 2XTUVT) + αTr(UTU)

∂U

=
∂Tr(UTUVTV − 2UVTXT) + αTr(UTU)

∂U

= 2(UVTV −XV + αU),

∂O
∂V

=
∂Tr(VUTUVT − 2XTUVT) + βTr(VTV)

∂V

=
∂Tr(VTVUTU− 2VTXTU) + βTr(VTV)

∂V

= 2(VUTU−XTU + βV).

(5)

4

Using these two derivatives, we can alternatively update U and V in each
iteration of gradient descent algorithm.

Note that the derivation can also be performed elementarily for each entry
in matrix U,V – this is, in fact, the original definition of matrix calculus. Such
element-wise derivation is especially useful in stochastic optimization. We will
touch this in a brief discussion of different algorithm schemes next.

2.1.2 Algorithm Schemes in CF and Others

For collaborative filtering, usually we take one subset of rated entries in X as
training set, and the rest rated entries as validation set. Detailed algorithm can
be found in [18]. An important implementation strategy is that, for each rated
entry in the training set, we update an entire row of U and an entire column of
VT , as the whole row or column is involved in approximating the rated entry.
Same updating mechanism could be applied in stochastic algorithm.

In the meanwhile, similarly to stochastic algorithm, this type of updating
does not fully utilize the data matrix in each updating iteration. The reason
is that, not only an entire row of U (and a column of VT) is involved in a
single entry in data matrix X, but also that a row of U (and a column of VT)
influences an entire row (column) of X. Therefore for faster convergence, we
recommend to update the matrix U and V by fully using data matrix X.

As the objective function is non-convex caused by the coupling between U
and V, we can choose to alternatively update U and V in each iteration as in
[4, 19]. Detailed algorithm is similar to the one in [19]. Within any of these
matrices, updating should be performed simultaneously as in all gradient-based
methods. Note that, we still need to choose a small learning rate to ensure that
the objective function is monotonically decreasing. Interestingly, the alternative
optimization scheme is even more suitable for non-negative MF [13, 14, 5, 4],
as we will see in the following subsections.

2.2 Non-negative MF

Non-negative MF [13] seeks to approximate data matrix X with low-dimensional
matrices U,V whose entries are all non-negative, i.e., U,V ≥ 0. The new prob-
lem becomes:

min
U,V
O = ‖X−UVT ‖2F + α‖U‖2F + β‖V‖2F

s.t. U ≥ 0,V ≥ 0.
(6)

Non-negativity constaint is originated from parts-of-whole interpretation
[13]. As we can think of, many real-world data are non-negative, such as link
strength, favorite strength, etc. Non-negative MF may uncover the important
parts, which sometimes can not be achieved by non-constrained MF [13].

Apart from the advantage of uncovering parts, non-negative MF has its own
computational advantage: there is a relatively fixed method to find a learning

5

rate larger than common gradient-based methods. To illustrate this, we will first
derive the updating rule for Eq. 6 as an example, then show the general approach
for proving the convergence of updating rules derived from the relatively fixed
method.

2.2.1 Updating Rule Derivation

The basic idea is using KKT complementary slackness conditions to enforce the
non-negativity constraint. Based on this, we can directly obtain updating rules.

The Lagrangian function of Eq. 6 is

L = ‖X−UVT ‖2F + α‖U‖2F + β‖V‖2F − Tr(Λ1U
T)− Tr(Λ2V

T). (7)

We have the following KKT condition,

Λ1 ◦U = 0,

Λ2 ◦V = 0,
(8)

where ◦ denotes the Hadamard product. We then have

∂L

∂U
=
∂Tr(VUTUVT − 2XTUVT) + αTr(UTU)− Tr(Λ1U

T)

∂U

= 2(UVTV −XV + αU)− Λ1,

∂L

∂V
=
∂Tr(VUTUVT − 2XTUVT) + βTr(VTV)− Tr(Λ2V

T)

∂V

= 2(VUTU−XTU + βV)− Λ2.

(9)

Let ∂L
∂U = 0 and ∂L

∂V = 0 as another KKT condition, we have

Λ1 = 2(UVTV −XV + αU),

Λ2 = 2(VUTU−XTU + βV).
(10)

Now we combine Eq. 8 and Eq. 10, we have

(UVTV −XV + αU) ◦U = 0,

(VUTU−XTU + βV) ◦V = 0.
(11)

from which, we have the final updating rules,

U(i, j)← U(i, j)

√
(XV)(i, j)

(UVTV + αU)(i, j)
,

V(i, j)← V(i, j)

√
(XTU)(i, j)

(VUTU + βV)(i, j)
.

(12)

6

Detailed algorithm using these rules is similar to the one in [19]. We can see
that, instead of manually setting small learning rates Λ’s, Eq. 12 directly offer
updating rules that can usually lead to faster convergence.

The correctness of these updating rules is straightforward to find out. Taking
U as an example, from Eq. 12 we have either U = 0 or UVTV−XV+αU = 0,
which combined together, exactly equal to Eq. 11. The convergence, however,
is somehow more difficult to be proved. We leave this to the next subsubsection.

2.2.2 Proof of Convergence

We prove the convergence of the updating rules in Eq. 12 with the standard
auxiliary function approach, which is proposed in [14] and extended in [5, 4].
Our proof is mainly based on [5, 4], although the objective function Eq. 6 is
slightly different.

An auxiliary function G(U,Ut) of function L(U) is a function that satis-
fies

G(U,U) = L(U), G(U,Ut) ≥ L(U). (13)

Then, if we take Ut+1 such that

Ut+1 = arg min
U

G(U,Ut), (14)

we have
L(Ut+1) ≤ G(Ut+1,Ut) ≤ G(Ut,Ut ≤ L(Ut)). (15)

This proves that L(U) is monotonically decreasing.
Turn back to our problem, we need to take two steps using auxiliary function

to prove the convergence of updating rules: 1) find an appropriate auxiliary func-
tion, and 2) find the global minima of the auxiliary function. As a remark, the
auxiliary function approach in principle is similar to Expectation-Maximization
approach that is widely used in statistical inference. Now let us complete the
proof by taking the above two steps.

Step 1 - Finding an appropriate auxiliary function needs to take
advantage of two inequalities,

z ≥ 1 + logz, ∀z > 0, (16)

m∑
i=1

k∑
j=1

(AS′B)(i, j)S(i, j)2

S′(i, j)
≥ Tr(STASB),

∀A ∈ Rm×m
+ ,B ∈ Rk×k

+ ,S′ ∈ Rm×k
+ ,S ∈ Rm×k

+ . (17)

The proof for Eq. 17 can be found in [5] (Proposition 6).
After removing irrelevant terms, the objective function Eq. 6 in terms of U

can be written as

Tr(VUTUVT − 2XTUVT) + αTr(UTU)

=Tr(UTUVTV − 2UTXV) + αTr(UTU) (18)

7

We now propose an auxiliary function

G(U,Ut) = −2
∑
i,j

(XV)(i, j)Ut(i, j)(1 + log
U(i, j)

Ut(i, j)
)

+
∑
i,j

(UtVTV)(i, j)U(i, j)2

Ut(i, j)
+ α

∑
i,j

Ut(i, j)U(i, j)2

Ut(i, j)
.

(19)

Combining the two inequalities Eq. 16, 17, it is straightforward to see that
Eq. 19 is a legal auxiliary function for Eq. 18, i.e., the two conditions in Eq. 13
are satisfied. Now we procceed to find Ut+1 that satisfies condition Eq. 14.

Step 2 - Finding Ut+1 can be achieved by obtaining the global minima of
Eq. 19. First, we have

∂G(U,Ut)

∂U(i, j)
= −2(XV)(i, j)

Ut(i, j)

U(i, j)
+ 2

(UtVTV)(i, j)U(i, j)

Ut(i, j)
+ 2αU(i, j).

(20)

Let ∂G(U,Ut)
∂U(i,j) = 0 we have

(XV)(i, j)
Ut(i, j)

Ut+1(i, j)
= (

(UtVTV)(i, j)

Ut(i, j)
+ α)Ut+1(i, j), (21)

from which we directly have

Ut+1(i, j) = Ut(i, j)

√
(XV)(i, j)

(UtVTV + αUt)(i, j)
, (22)

which is exactly the updating rule for U in Eq. 12. Similar result can be
obtained for V.

General observation If we go over the entire derivation process, by compar-
ing Eq. 22 and Eq. 11, we can observe that the only thing that matters for the
final updating rules is the signs of the terms in Eq. 11.

2.3 Orthogonal Non-negative MF

Orthogonality is another important constraint to MF. First of all, we formulate
the problem as

min
U,V
O = ‖X−UVT ‖2F

s.t. U,V ≥ 0,UTU = I,VTV = I.
(23)

Note that here we do not add regularization due to the orthogonality constraint.

8

It is proved in [3, 5] ([5] gives more mature proof) that this problem is
equivalent to K-means clustering: V′ is an indication matrix with V′(i, j) = 0

if xi belongs to the jth (1 ≤ j ≤ k) cluster. Here V = V′(V′
T
V′)−1/2, i.e., V

is a normalized version of V′: V′ is a constant scaling of corresponding row of
V, and ‖V(:, j)‖22 = 1.

2.3.1 3-factor MF vs. 2-factor MF

We call Eq. 23 1-sided 2-factor orthogonal non-negative MF, as only one fac-
torized matrix needs to be orthogonal, and there are in total two factorized
matrices. It is recommended that, to simultaneously cluster rows and columns
in X, we need 3-factor bi-orthogonal non-negative MF, i.e., both U and V
being orthogonal:

min
U,H,V

O = ‖X−UHVT ‖2F

s.t. U,H,V ≥ 0,UTU = I,VTV = I.
(24)

It is proved that, compared to 3-factor bi-orthogonal non-negative MF, 2-
factor bi-orthogonal non-negative MF is too restrictive, and will lead to poor
approximation [5].

3-factor bi-orthogonal non-negative MF is useful in document-word cluster-
ing [5], outperforming K-means (i.e., 1-sided 2-factor orthogonal non-negative
MF). It has been applied for tasks such as sentiment analysis [10].

2.3.2 Updating Rule Derivation

We now derive updating rules for Eq. 24, as we did before for non-negative
MF.

The Lagrangian function for Eq. 24 is

L =‖X−UHVT ‖2F − Tr(ΛUUT)− Tr(ΛHHT)− Tr(ΛV VT)

+Tr(ΓU (UTU− I)) + Tr(ΓV (VTV − I))
(25)

We then compute the updating rules for H,U,V sequentially.
Computation of H

∂L

∂H
=
∂Tr(VHTUTUHVT − 2XVHTUT)− Tr(ΛHHT)

∂H

= 2UTUHVTV − 2UTXV − ΛH ,

(26)

We have the following KKT conditions,

∂L

∂H
= 0

ΛH ◦H = 0.
(27)

9

Combining the above three equations, we have

(UTUHVTV −UTXV) ◦H = 0. (28)

Therefore we have the following updating rule for H,

H(i, j)← H(i, j)

√
(UTXV)(i, j)

(UTUHVTV)(i, j)
. (29)

Note that UTU 6= I during the optimizing process.
Computation of U,V
Due to the orthogonality constraint, obtaining the updating rules for U,V

needs to eliminate both Λ and Γ in the final updating rules. This will need the
following equality,

UT ΛU = 0⇐ ΛU ◦U = 0 (30)

The latter will automatically be satisifed according to KKT conditions as we
will see below.

∂L

∂U
=
∂Tr(VHTUTUHVT − 2XVHTUT)− Tr(ΛUUT) + Tr(ΓU (UTU− I))

∂U

= 2UHVTVHT − 2XVHT − ΛU + 2UΓU ,

(31)

We have the following KKT conditions,

∂L

∂U
= 0

ΛU ◦U = 0.
(32)

Combining the above three equations we have

(UHVTVHT −XVHT + UΓU) ◦U = 0 (33)

and

ΓU = UTXVHT −HVTVHT . (34)

Note that here we can have UTU = I as we only want an expression for
ΓU . Further note that for Λ we have the constraint Λ > 0 (according to KKT
condition) while for Γ we do not have such constraint. Therefore we need to
split Γ into two parts,

ΓU = Γ+
U − Γ−U

Γ+
U = (|ΓU |+ ΓU)/2

Γ−U = (|ΓU | − ΓU)/2.

(35)

10

Using this division we rewrite Eq. 33, we then have

(UHVTVHT −XVHT + UΓ+
U −UΓ−U) ◦ ΛU = 0. (36)

Therefore the final updating rule for U is

U(i, j)← U(i, j)

√
(XVHT + UΓ−U)(i, j)

(UHVTVHT + UΓ+
U)(i, j)

. (37)

where Γ+
U and Γ−U is defined in Eq. 34 and 35.

If we go over the same process again for V, we have the following updating
rules, Therefore the final updating rule for U is

V(i, j)← V(i, j)

√
(XTUH + VΓ−V)(i, j)

(VHTUTUH + VΓ+
V)(i, j)

. (38)

where Γ+
V ,Γ

−
V are defined similarly as in Eq. 35 (replace U with V), and ΓV is

defined as
ΓV = VTXTUH + HTUTUH. (39)

Choice of 2/3-factor MF How do we choose between 2-factor or 3-factor
MF in real-world applications? A general principle is that: if we only need to
place regularizations on one latent matrix, i.e. either U or V, then we can use
2-factor MF; if both U and V are to be regularized, either explictly or implictly,
3-factor MF might be a better choice.

3 Adapatations and Applications

MF has been used for a wide range of applications in social computing, including
collaborative filtering (CF), link prediction (LP), sentiment analysis, etc. It can
not only provide as a single model for matrix completeion or clutering, but also
as a framework for solving almost all categories of prediction problems.

In this part we will extend MF to highly sparse cases. For the cases in which
we have additional data, e.g. link data between users (in CF, or addtional links
in LP) or description data of users and items, we can incorporate different regu-
larization techniques to enhace the matrix completion performance. Moreover,
by properly manipulating latent factors derived from MF, we can adapt MF
to (un-/semi-)supervised learning.

3.1 Sparse Matrix Completion

Here we address the problem of using MF for collborative filtering, link pre-
diction and clustering. We start with a basic assumption, which makes the

11

previously introduced models unsuitable. This basic assumption is: high por-
tion of the data is missing, i.e. data matrix is incomplete. Such assumption is
very common in real-world cases [12].

The problem is solved by modeling directly the observed data. Eq. 1 is
modified as follows:

min
U,V
O = ‖O ◦ (X−UV

T
)‖2F + α‖U‖2F + β‖V‖2F , (40)

in which O poses constraints on only these observed data entries, i.e. O(i, j) = 1
if entry (i, j) is observed, and O(i, j) = 0 otherwise.

In this case, the objective function is transformed as follows:

min
U,V
O = Tr((OT ◦XT)(O ◦X) + (OT ◦VUT)(O ◦UVT)

− 2(OT ◦XT)(O ◦UVT)) + αTr(UTU) + βTr(VTV).
(41)

And the gradients become:

∂O
∂U

=
∂Tr((OT ◦VUT)(O ◦UVT)− 2(OT ◦XT)(O ◦UVT)) + αTr(UTU)

∂U

=
∂Tr(UT (O ◦O ◦UVT)V − 2(OT ◦OT ◦XT)UVT) + αTr(UTU)

∂U

= 2((O ◦O ◦UVT)V − (O ◦O ◦X)V + αU),

∂O
∂V

= 2((OT ◦OT ◦VUT)U− (OT ◦OT ◦XT)U + βV).

(42)

In the derivation above we use the following rule of Hadamard product:

Tr((OT ◦AT)(O ◦A)) = Tr(AT (O ◦O ◦A)). (43)

The upodating rules for non-negative MF and orthogonal non-negative MF
is straightforward: the methods of getting Λ,Γ are exactly the same as what we
did in Theory Section. For updating rules of non-negative MF and orthogonal
non-negative MF, the reader can refer to [7] and [8], respectively.

3.1.1 Calculating Memory Occupation

Note that the updating rules above are again purely matrix-wise – this is to be
consistent with the style of this article. In matrix completion, however, some-
times the size of the data matrix is bigger than memory size, making stochasitc
gradient descent algorithm more suitable than the matrix-wise method.

The question here is, how do we calculate the size of a matrix to see if it
fits to memory. Here is a easy way to make such a calculation. Assume we
have a 10K × 10K matrix, with each entry allocated a 32bit float (e.g. float32
in python), then the memory allocation for the whole matrix can be roughtly
calculated as

(104 × 104 × 4)/106 = 400M.

12

So for a computer with 4G memory, we can fit a matrix 100K×10K matrix
into memory. For a computer with 32G memory, we can fit a matrix of size
100K × 80K (10× 8× 400M = 32G).

3.2 Enhanced Matrix Completion

We looked at MF with different constraints, e.g. non-negativity and orthogality,
and one type of regularization which prevents the entries in low-rank matrices
being too large. This subsection considers other kinds of regularization when
external data source becomes avaiable, i.e. goes beyond the data matrix X.
Usually this is the real-world case, since most social media data contains rich
data sources.

In this subsection we consider two types of regularization with corresponding
addtional data:

1. self-regularization when we have additional linked data between users
(in CF, or addtional link type in LP);

2. 2-sided regularization when we have description data of users and
items.

We further point to two publications [19] and [8], to demonstrate the above
two types of regularization, respectively.

3.2.1 Enhancing Matrix Completion with Self-regularization

By self-reguarization, we refer to the regularization of rows in low-rank matrix
U or V. Assume now we are dealing with a LP problem, in which we would like
to predict if a user trust another – trust relation are common in review sites like
Epinions. Usually there exist another type of links between users, i.e. social
relation. Can we use social relation to boost the performance of trust relation
prediction? This is exactly the research question proposed in [19].

It turns out the answer is yes – as expected, users with social relation tend to
share similar preferences. The basic idea to incorporate this into trust prediction
is by adding the regularization term Eq. 44 into the general MF framework. In
Eq. 44, ξ is the entries in the additional link matrix Z and D is the diagonal
matrix with D(i, i) = Zm

j=1(j, i), thus L is the Laplacian matrix of D. It is
interesting that, using trace operator, the regularization Eq. 44 become such
simple.

Social relation is common in social computing, the similarity in people with
social relation has a specific name in social theory - ‘homophily’, making this
type of regularization applicable to a lot of social computing scenarios. If we
generalize a bit, we may assume that many linked objects, not necessarily web
users, have similarities, in terms of their entries of data matrix X that we would
like to predict. For instance, while predicting the sentiment of articles, we
may assume that articles authored by the same users tend to express similar
sentiment, e.g. political reviewers expressing negative sentiment in their news

13

reviewing articles. We will see that this type of regularization is used in a
sentiment analysis paper [10], which we will analyze later.

1

2

m∑
i=1

m∑
j=1

ξ(i, j)‖U(i, :)−U(j, :)‖22

=
1

2

m∑
i=1

m∑
j=1

k∑
d=1

ξ(i, j)(U(i, k)−U(j, k))2

=
1

2

m∑
i=1

m∑
j=1

k∑
d=1

ξ(i, j)(U2(i, k)− 2U(i, k)U(j, k) + U2(j, k))

=

m∑
i=1

m∑
j=1

k∑
d=1

ξ(i, j)U2(i, k)−
m∑
i=1

m∑
j=1

k∑
d=1

ξ(i, j)U(i, k)U(j, k)

=

k∑
d=1

UT (:, k)(D−Z)U(:, k)

=Tr(UTLU)

(44)

Regularization and Sparseness More regularization sometimes can con-
quer the data sparsity problem, to some extent. On the other hand, modelling
the error only on observed data entries, as what O does in previous subsection,
could be also very effective.

3.2.2 Enhancing Matrix Completion with 2-sided regularization

Here we consider placing regularization on both U and V together, which we
call 2-sided regularization.

Before we start, we review orthogonal non-negative MF a bit. Orthogonality
constraint in orthogonal non-negative MF is similar to a 2-sided regularization:

Tr(ΓT
U (UTU− I)), T r(ΓT

V (VTV − I))

are two equality constraints over low-rank matrices. Such equality needs to be
strictily satisfied. Regularization, differing from constraints, however
can be viewed as a soft type of constraints: it only needs to be satisfied
to some extend, while constraints need to be strictly satisified. This is the
reason why we consider non-negativity and orthogonality constraints, while call
homophily regularization.

Now let us turn our attention back to 2-sided regularization, basing the
example from [8], which considers POI recommendation in location-based social
network (LBSN). The first data we have is a check-in data X that encodes the
interaction between users and POI’s. We are further given some desription data
A of user interest, and B of POI property, both in the form of word vectors.

14

Question here is, how do we make use of A and B to enhance the matrix
completion problem for interacting matrix X?

Since we are coping with 2-sided regularization, we use 3-factor MF:

min
U,H,V

O = ‖X−UHVT ‖2F − Tr(ΛUUT)− Tr(ΛHHT) +R′s. (45)

The only thing here is, how to add the 2-sided regularization terms R’s, as we
did for orthogonality constraints.

To utilize A and B, we assume that there are some connections between
them, such that they can be used to regularize U and V. In the context of
LBSN, we may assume that A and B have similar vocabulary, in which the
words have similar latent space. Therefore we can approximate A and B with
2-factor MF:

A ≈ UGT ,B ≈ VG∗T (46)

with connection
‖G−G∗‖1 ≈ 0. (47)

Eq. 47 is important since it really connect U with V, forming a 2-sided
regularization. The final objective function now becomes:

min
U,H,V

O = ‖X−UHVT ‖2F − Tr(ΛUUT)− Tr(ΛHHT)

+ λA‖A−UGT ‖2F + λB‖B−UG∗T ‖2F + δ‖G−G∗‖1
+ α(‖U‖2F + ‖V‖2F + ‖H‖2F + ‖G‖2F).

(48)

The last line is to regularize in approximating A,B; note that since here we
use regularization, instead of constraints as in non-negative orthogonal MF, we
can add regualrization to U,V,H.

Factorization vs. Regularization We remark here that the idea of co-
factoring two matrices (X,A) with shared factors (U) originates from collective
matrix facterization [17], which has many applications in CF [16]. A interesting
comparative study between collective facterization and self-regularization can
be found in [20].

3.3 From Clustering to (Un-/Semi-)supervised Learning

Although different types of extra data sources can be used in enhanced MF,
the purpose so far to remains be matrix completion. This subsection, however,
considers other types of machine learning problems, i.e. (un-/semi-)supervised
learning. The essential assumption of using MF for (un-/semi-)supervised learn-
ing is that the latent row(column) is or can be predictable for some dependent
variables.

To make use of the predictability, we need mechanisms to connect the latent
vectors to responses. Following are the two mechanisms:

15

1. enforcement directly enforce the latent space to be the response space;

2. transformation transform the latent space to response space. This is
similar as what people do in machine learning.

We point to publications [10] and [6] for the demonstration of the above two
methods, respectively.

3.3.1 Enforcing Latent Factor to be Response

In previous regularizations, we do not force the latent space to be interpretable
space. For instance, in the 2-sided regularization, we do not specify the mean-
ing of U that is used in both X and A factorization. However, (un-/semi-
)supervised learning requires the latent space to be interpretable. The method,
still, is regularization.

[10] deals with the problem of sentiment analysis, for which the authors use
3-factor non-negative orthogonal MF. The input is a post-word matrix X. In
addition, we are given emotion indication in some of the posts. “The key idea
of modeling post-level emotion indication is to make the sentiment polarity of a
post as close as possible to the emotion indication of the post.”, formulated as

Gu‖U−U0‖2F ,

in which U ∈ Rm×2 is the post-sentiment matrix, i.e. U(i, :) = (1, 0) rep-
resenting that the ith post has a positive sentiment, and U0 ∈ Rm×2 is the
post-emotion indication matrix, i.e. U0(i, :) = (1, 0) meaning the ith post con-
tains positive emotion indication. Similar regularization is applied to V as well.

Such an idea is quite simple, however it explictly poses a notable question: is
it computationally feasible that we strictly enforce the U,V to any pre-defined
space, i.e. sentiment space in this case. Based on Proposition 1 in [5], we know
that the answer is no. However, as we see in this sentiment analysis work [10],
regularization is always possible!

In fact, the enforcement regularization that we see in this work is the most
constrained regularization: it is 2-sided regularization for both U,V, and it is
enforcement without any transformation coefficients. We will see next how to
regularize for supervised learning by tranformation.

3.3.2 Transforming Latent Factor to Response

As we pointed out, the essential idea of supervised learning is to transform the
latent variables to some response variable. To see this, we study an example
that exploit matrix factorization to boost (sparse) regression.

Here we solve the following optimization problem:

min
U,V≥0

‖X−UVT ‖2F + λ‖O� (UWT −Y)‖2F

+ λX(‖U‖2F + ‖V‖2F) + λY ‖W‖1.
(49)

16

Optimizing the objective function accomplishes two goals simultaneously:
1) learning the latent factors; and, 2) predicting the dependent variables based
on the learnt latent factors. As the learning of U is guided by the prediction
of Y (proved later), the learned latent factors can be more predictive in the
regression. Note that the parameter λ controls the relative importance between
matrix factorization and regression – a larger λ indicates that the regression
should dominate.

O is a mask vector with the first ntrain – the size of training set – entries
equal to 1, and the other ntest – the size of test set – entries equal to 0. Corre-
spondingly, X contains both the training data in the first ntrain rows and the
test data, in the remaining ntest rows. Y is also composed of two parts, the
first ntrain entries being the complexity values of the training tasks; the other
entries can be any values, as they are not involved in model learning, which is
controlled by the 0’s in O.

The Lagrangian function of the objective function is

L = ‖X−UVT ‖2F + λ‖O� (UWT − Y)‖2F
+ λX(‖U‖2F + ‖V‖2F) + λY ‖W‖1 − Tr(ΛUU

T)− Tr(ΛV VT).
(50)

The derivative of U is:

∂L

∂U
=
∂Tr(VUTUVT − 2XTUVT)

∂U

+
∂λTr((OT �WUT)(O�UWT)− 2(OT �YT)(O�UWT))

∂U

+
∂λXTr(U

TU)− Tr(ΛUU
T)

∂U

= 2(UVTV −XV + λ(O� (UWT))W − λ(O�Y)W + λXU)

− ΛU .

(51)

The derivative of V is:

∂L

∂V
=
∂Tr(VUTUVT − 2XTUVT) + λXTr(V

TV)− Tr(ΛV VT)

∂V

= 2(VUTU−XTU + λXV)− ΛV .

(52)

Note that for W the problem becomes a classic Lasso problem, we can
update it use standard algorithm such as LARS.

According to the KKT conditions:

∂L

∂U
= 0,

∂L

∂V
= 0,

ΛU �U = 0,ΛV �V = 0.
(53)

We have

(UVTV −XV + λ(O� (UWT))W

− λ(O�Y)W + λXU)�U = 0,

(VUTU−XTU + λXV)�V = 0.

(54)

17

It leads to the following updating rules for U,V:

U(i, j)← U(i, j)

√
(XV + λ(O�Y)W)(i, j)

(UVTV + λ(O� (UWT))W + λXU)(i, j)
,

V(i, j)← V(i, j)

√
(XTU)(i, j)

(VUTU + λXV)(i, j)
.

(55)

3.3.3 A Comprehensive Model

Here we review an application of [6] that integrates the methods of enforce-
ment and transformation. In this application, we would like to model a user’
attitude towards some controversial topic, reflected by his opinion, sentiment
and retweeting action. We are given a retweeting matrix X representing users’
retweeting action to some tweets, and we would like to predict users’ opinion O
and sentiment P, and the task is to predict these three variables given the user
feature F.

We first introduce how the model is built in [6], then discuss other alterna-
tives. To train such a model, the authors propose the following model

min
W,V

O = ‖X− (FWT)VT ‖2F + λ1‖FWT −O‖2F + λ2‖(FWT)S−P‖2F

+ λ3‖W‖1 + α‖W‖2F + β‖V‖2F + γ‖S‖2F − Tr(Λ1U
T)− Tr(Λ2V

T),

(56)

in which λ1‖FWT − O‖2F and λ3‖W‖1 models opinion from the user feature
by bringing in the classical linear regression. We can see that modeling the
sentiment is also straightforward: λ2‖FWTS−P‖2F simply transfers again the
user feature with a linear transformation S. The retweeting matrix X, similarily,
also using FWT as the latent vectors.

To summarize, the model Eq. 56 bases the prediction of retweeting action,
opinion and sentiment all on the user features. If we make λ1 to be infinitely
large, meaning that we enforce FWT = O, then in fact, X ≈ OVT and OS ≈ P.
Such choice is based on the assumption that opinion drives both the retweeting
action and sentiment.

Model Eq. 56 is an comprehensive model, in the sense that the subtask
of matrix completion, cluatering and regression are fused together, by basing
all prediction on user feature transformation. What if we are not given the use
feature information? Instead, we directly model the relation between retweeting
action, opinion and sentiment. A straightforward model could be

min
U,V
O = ‖X−UVT ‖2F + λ1‖U−O‖2F + λ2‖US−P‖2F

+ α‖U‖2F + β‖V‖2F + γ‖S‖2F − Tr(Λ1U
T)− Tr(Λ2V

T).
(57)

18

References

[1] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2009.

[2] Mike Brookes. The matrix reference manual. Imperial College London,
2005.

[3] Chris Ding, Xiaofeng He, and Horst D Simon. On the equivalence of non-
negative matrix factorization and spectral clustering. In SDM’05, pages
606–610. SIAM, 2005.

[4] Chris Ding, Tao Li, and Michael I Jordan. Nonnegative matrix factorization
for combinatorial optimization: Spectral clustering, graph matching, and
clique finding. In ICDM’08, pages 183–192. IEEE, 2008.

[5] Chris Ding, Tao Li, Wei Peng, and Haesun Park. Orthogonal nonnegative
matrix t-factorizations for clustering. In KDD’06, pages 126–135. ACM,
2006.

[6] Huiji Gao, Jalal Mahmud, Jilin Chen, Jeffrey Nichols, and Michelle Zhou.
Modeling user attitude toward controversial topics in online social media.
In ICWSM’14, 2014.

[7] Huiji Gao, Jiliang Tang, Xia Hu, and Huan Liu. Exploring temporal ef-
fects for location recommendation on location-based social networks. In
RecSys’13, pages 93–100. ACM, 2013.

[8] Huiji Gao, Jiliang Tang, Xia Hu, and Huan Liu. Content-aware point of
interest recommendation on location-based social networks. In AAAI’15,
2015.

[9] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of
statistical learning. Springer, 2009.

[10] Xia Hu, Jiliang Tang, Huiji Gao, and Huan Liu. Unsupervised sentiment
analysis with emotional signals. In WWW’13, pages 607–618. ACM, 2013.

[11] Yehuda Koren. Factorization meets the neighborhood: a multifaceted col-
laborative filtering model. In KDD’08, pages 426–434. ACM, 2008.

[12] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization tech-
niques for recommender systems. Computer, 42(8):30–37, 2009.

[13] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by
non-negative matrix factorization. Nature, 401(6755):788–791, 1999.

[14] Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix
factorization. In NIPS’01, pages 556–562, 2001.

19

[15] Andriy Mnih and Ruslan Salakhutdinov. Probabilistic matrix factorization.
In NIPS’07, pages 1257–1264, 2007.

[16] Yue Shi, Martha Larson, and Alan Hanjalic. Collaborative filtering beyond
the user-item matrix: A survey of the state of the art and future challenges.
ACM Computing Surveys (CSUR), 47(1):3, 2014.

[17] Ajit P Singh and Geoffrey J Gordon. Relational learning via collective
matrix factorization. In KDD’08, pages 650–658. ACM, 2008.

[18] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Ma-
trix factorization and neighbor based algorithms for the netflix prize prob-
lem. In RecSys’08, pages 267–274. ACM, 2008.

[19] Jiliang Tang, Huiji Gao, Xia Hu, and Huan Liu. Exploiting homophily
effect for trust prediction. In WSDM’13, pages 53–62. ACM, 2013.

[20] Quan Yuan, Li Chen, and Shiwan Zhao. Factorization vs. regularization:
fusing heterogeneous social relationships in top-n recommendation. In Rec-
sys’11, pages 245–252. ACM, 2011.

20

