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ML is applied in a selective fashion

In practice, ML models are almost always used as selective models:

a default, safe outcome is selected when the ML prediction is rejected.
Selectivity is often implemented by filtering based on a confidence threshold.
So, predictions can be correct or wrong, or the prediction workflow
abstains, that is, the prediction is rejected.

This is the rule, not the exception. And it comes with massive theoretical and
practical consequences.

4 N

got prediction?

: : decision
data Selective O apply predicted Q

— R —YES —/>» — —_—
Classification Pipeline class

predicted class
or "I dont know"
NO | apply default /J

ask human /

\ ,

in most cases this is based on
setting a threshold and the rejection
policy is confidence < threshold. In
that case, an "l don't know" answer
is returned

Classifier Rejection
—
Model function

Value, not Accuracy

Commonly used measures such as accuracy, F1, true positives, and AUC
can be misleading: What matters is a notion of value, which depends on the
“utility” of correct predictions, wrong predictions, and rejections,

On the one hand this is obvious. On the other, this is constantly overlooked
both in research and in practice.

While the full diversity/complexity of real use cases cannot be accounted for
by research benchmarks, value-estimating metrics may be designed to
capture high-level commonalities among classes of real use cases.

On Learning and Confidence Distributions

The ability of a model to provide meaningful confidence measures—and of a
deployment to use the right threshold—is central to value.

Using a validation dataset representative of the use case, we can maximize
the model value by tuning the rejection function so that even models with
arbitrarily low accuracy bring better or equal value than no model.
Calibration does not affect value if the rejection threshold is tuned with a
validation dataset. Also, commonly used measures of calibration (such as
ECE) may be misleading.

Learning does not mean better accuracy or better calibration. Given a
calibrated model, its value can be increased without altering its prediction
(and thus its accuracy) by learning a confidence distribution that is more
discriminating.

Such concerns are not part of the main ML research narrative. We argue
that they should, and that benchmarks should aim to account for them.
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Above: We assume that the value derived from a model’s prediction may
only depend on which of these three cases occurs. Three arbitrary values
may be ascribed to each of these cases, but a change of variable takes this
down to a single parameter, w, determining the cost of making a wrong
prediction in terms of the value of a correct one.

Below: Each curve traces the value of a fictious model as a function of w.
Like ROC curves, a model whose value is everywhere above another one’s
is strictly “better” for all use cases. We argue for this kind of plot (and/or
derived quantities) to be used in benchmarks.
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Mathematical Detalls

Traditional classifier f : X — [0, 1]°.
— Predicted class argmax; f;(x) € {1,--- ,C}.
— Confidence max; f;(x) € [0, 1].

Abstaining classifier g : X — {0,1,--- ,C}.

— Predicted class g(x) € {0,1,--- ,C'}, 0 means “abstain”.

— No access to any confidence score.

Common approach in applications: apply threshold ¢.

argmax f;(x) if max f;(x) >t
gr 1 (x) = | i€{1,-,C} e 15,0}
0 otherwise.

Given a dataset ® and an abstaining classifier g, we may count that model’s
total number Ncorrect Of correct predictions, Napstain 0f abstentions, and Nyrong
of incorrect predictions.

Suppose that we know 4 = (Veorrect; Vabstains Vivrong) fOr a given use case such
that the total value (in dollars or any other utility unit) provided by an abstaining
classifier g for a dataset © is

V(ga ﬂ, D) — Vcorrect : Ncorrect o Vva,bstain : Nabstain I Vwrong ' Nwrong

We define the change of variables

V(g, w, @) — V(g’ua @) — Vabstain whore = Vabstain — Vwrong
‘@’(%orrect - Vabstain) l/correct _ Vabstain

If Viverong < Vabstain < Veorrect, then w > 0 and the dimensionless value is

Ncorroct - WNwrong

V(g,w,®) =
(g ) Ncorrect + Nabstain + Nwrong

w-aware: given traditional classifier f and validation dataset ®’, the optimal
threshold for a fixed w is

t, = argmax V(gg ¢, w, D)
teR ’

Calibrated: if f@ returns confidence ¢, then probability ¢ to be correct.

— Calibration doesn’t affect value: if £ obtained from f using monotonously
increasing function ¢ : [0, 1] — [0, 1] on its confidence, then same optimal
value at threshold ¢t = ¢(¢,,).

— Calibration grounds threshold: if p : [0,1] — R>( is PDF for confidence of
feal in ©’, then t°® = w/(w + 1) maximizes

V(ggear 4w, D) = /t lc —w(1l —c¢)]p(c)de

e Trivial: “better” model by moving mass in p(c) to higher confidence.

— This operation increases the accuracy fol cp(c)de.

e Less trivial: “better” model by moving mass both up and down.

T 1 :
— Increase discrimination [, (3 — ¢)?p(c) de with same accuracy.

— Intuition: make value curve fall more slowly.
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