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Abstract

Microblogging platforms such as Twitter are increas-
ingly being used in event detection. Existing approaches
mainly use machine learning models and rely on event-
related keywords to collect the data for model training.
These approaches make strong assumptions on the dis-
tribution of the relevant microposts containing the key-
word – referred to as the expectation of the distribution
– and use it as a posterior regularization parameter dur-
ing model training. Such approaches are, however, lim-
ited as they fail to reliably estimate the informativeness
of a keyword and its expectation for model training.
This paper introduces a Human-AI loop approach to
jointly discover informative keywords for model train-
ing while estimating their expectation. Our approach it-
eratively leverages the crowd to estimate both keyword-
specific expectation and the disagreement between the
crowd and the model in order to discover new keywords
that are most beneficial for model training. These key-
words and their expectation not only improve the re-
sulting performance but also make the model training
process more transparent. We empirically demonstrate
the merits of our approach, both in terms of accuracy
and interpretability, on multiple real-world datasets and
show that our approach improves the state of the art by
24.3%.

1 Introduction
Event detection on microblogging platforms such as Twit-
ter aims to detect events preemptively. A main task in event
detection is detecting events of predetermined types (Atefeh
and Khreich 2015), such as concerts or controversial events
based on microposts matching specific event descriptions.
This task has extensive applications ranging from cyber se-
curity (Ritter et al. 2015; Chambers, Fry, and McMasters
2018) to political elections (Konovalov et al. 2017) or public
health (Akbari et al. 2016; Lee et al. 2017). Due to the high
ambiguity and inconsistency of the terms used in microp-
osts, event detection is generally performed though statisti-
cal machine learning models, which require a labeled dataset
for model training. Data labeling is, however, a long, labo-
rious, and usually costly process. For the case of micropost
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classification, though positive labels can be collected (e.g.,
using specific hashtags, or event-related date-time informa-
tion), there is no straightforward way to generate negative la-
bels useful for model training. To tackle this lack of negative
labels and the significant manual efforts in data labeling, Rit-
ter et al. (2015; 2017) introduced a weak supervision based
learning approach, which uses only positively labeled data,
accompanied by unlabeled examples by filtering microposts
that contain a certain keyword indicative of the event type
under consideration (e.g., ‘hack’ for cyber security).

Another key technique in this context is expectation reg-
ularization (Mann and McCallum 2007; Druck, Mann, and
McCallum 2008; Ritter et al. 2015). Here, the estimated pro-
portion of relevant microposts in an unlabeled dataset con-
taining a keyword is given as a keyword-specific expecta-
tion. This expectation is used in the regularization term of
the model’s objective function to constrain the posterior dis-
tribution of the model predictions. By doing so, the model is
trained with an expectation on its prediction for microposts
that contain the keyword. Such a method, however, suffers
from two key problems:

1. Due to the unpredictability of event occurrences and
the constantly changing dynamics of users’ posting fre-
quency (Myers and Leskovec 2014), estimating the ex-
pectation associated with a keyword is a challenging task,
even for domain experts;

2. The performance of the event detection model is con-
strained by the informativeness of the keyword used for
model training. As of now, we lack a principled method
for discovering new keywords and improve the model per-
formance.

To address the above issues, we advocate a human-AI
loop approach for discovering informative keywords and
estimating their expectations reliably. Our approach itera-
tively leverages 1) crowd workers for estimating keyword-
specific expectations, and 2) the disagreement between the
model and the crowd for discovering new informative key-
words. More specifically, at each iteration after we obtain
a keyword-specific expectation from the crowd, we train
the model using expectation regularization and select those
keyword-related microposts for which the model’s predic-
tion disagrees the most with the crowd’s expectation; such
microposts are then presented to the crowd to identify new



keywords that best explain the disagreement. By doing so,
our approach identifies new keywords which convey more
relevant information with respect to existing ones, thus ef-
fectively boosting model performance. By exploiting the
disagreement between the model and the crowd, our ap-
proach can make efficient use of the crowd, which is of
critical importance in a human-in-the-loop context (Yan et
al. 2011; Yang et al. 2018). An additional advantage of
our approach is that by obtaining new keywords that im-
prove model performance over time, we are able to gain in-
sight into how the model learns for specific event detection
tasks. Such an advantage is particularly useful for event de-
tection using complex models, e.g., deep neural networks,
which are intrinsically hard to understand (Ribeiro, Singh,
and Guestrin 2016; Doshi-Velez and Kim 2017).

An additional challenge in involving crowd workers is
that their contributions are not fully reliable (Vaughan 2018).
In the crowdsourcing literature, this problem is usually tack-
led with probabilistic latent variable models (Dawid and
Skene 1979; Whitehill et al. 2009; Zheng et al. 2017), which
are used to perform truth inference by aggregating a redun-
dant set of crowd contributions. Our human-AI loop ap-
proach improves the inference of keyword expectation by
aggregating contributions not only from the crowd but also
from the model. This, however, comes with its own chal-
lenge as the model’s predictions are further dependent on
the results of expectation inference, which is used for model
training. To address this problem, we introduce a unified
probabilistic model that seamlessly integrates expectation
inference and model training, thereby allowing the former to
benefit from the latter while resolving the inter-dependency
between the two.

To the best of our knowledge, we are the first to propose a
human-AI loop approach that iteratively improves machine
learning models for event detection. In summary, our work
makes the following key contributions:

• A novel human-AI loop approach for micropost event de-
tection that jointly discovers informative keywords and
estimates their expectation;

• A unified probabilistic model that infers keyword expec-
tation and simultaneously performs model training;

• An extensive empirical evaluation of our approach on
multiple real-world datasets demonstrating that our ap-
proach significantly improves the state of the art by an
average of 24.3% AUC.

The rest of this paper is organized as follows. First, we
present our human-AI loop approach in Section 2. Subse-
quently, we introduce our proposed probabilistic model in
Section 3. The experimental setup and results are presented
in Section 4. Finally, we briefly cover related work in Sec-
tion 5 before concluding our work in Section 6.

2 The Human-AI Loop Approach
Given a set of labeled and unlabeled microposts, our goal
is to extract informative keywords and estimate their ex-
pectations in order to train a machine learning model. To
achieve this goal, our proposed human-AI loop approach

comprises two crowdsourcing tasks, i.e., micropost classi-
fication followed by keyword discovery, and a unified prob-
abilistic model for expectation inference and model training.
Figure 1 presents an overview of our approach. Next, we de-
scribe our approach from a process-centric perspective.

Following previous studies (Ritter et al. 2015; Chang,
Teng, and Zhang 2016; Chambers, Fry, and McMasters
2018), we collect a set of unlabeled microposts U from a mi-
croblogging platform and post-filter, using an initial (set of)
keyword(s), those microposts that are potentially relevant to
an event category. Then, we collect a set of event-related mi-
croposts (i.e., positively labeled microposts)L, post-filtering
with a list of seed events. U andL are used together to train a
discriminative model (e.g., a deep neural network) for clas-
sifying the relevance of microposts to an event. We denote
the target model as pθ(y|x), where θ is the model parameter
to be learned and y is the label of an arbitrary micropost, rep-
resented by a bag-of-words vector x. Our approach iterates
several times t = {1, 2, . . .} until the performance of the
target model converges. Each iteration starts from the initial
keyword(s) or the new keyword(s) discovered in the previ-
ous iteration. Given such a keyword, denoted by w(t), the
iteration starts by sampling microposts containing the key-
word from U , followed by dynamically creating micropost
classification tasks and publishing them on a crowdsourcing
platform.
Micropost Classification. The micropost classification task
requires crowd workers to label the selected microposts into
two classes: event-related and non event-related. In partic-
ular, workers are given instructions and examples to differ-
entiate event-instance related microposts and general event-
category related microposts. Consider, for example, the fol-
lowing microposts in the context of Cyber attack events,
both containing the keyword ‘hack’:

Credit firm Equifax says 143m Americans’ social secu-
rity numbers exposed in hack

This micropost describes an instance of a cyber attack event
that the target model should identify. This is, therefore, an
event-instance related micropost and should be considered
as a positive example. Contrast this with the following ex-
ample:

Companies need to step their cyber security up

This micropost, though related to cyber security in general,
does not mention an instance of a cyber attack event, and is
of no interest to us for event detection. This is an example
of a general event-category related micropost and should be
considered as a negative example.

In this task, each selected micropost is labeled by multi-
ple crowd workers. The annotations are passed to our proba-
bilistic model for expectation inference and model training.
Expectation Inference & Model Training. Our probabilis-
tic model takes crowd-contributed labels and the model
trained in the previous iteration as input. As output, it gen-
erates a keyword-specific expectation, denoted as e(t), and
an improved version of the micropost classification model,
denoted as pθ(t)(y|x). The details of our probabilistic model
are given in Section 3.
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Figure 1: An overview of our proposed human-AI loop approach. Starting from a (set of) new keyword(s), our approach is
based on the following processes: 1) Micropost Classification, which samples a subset of the unlabeled microposts containing
the keyword and asks crowd workers to label these microposts; 2) Expectation Inference & Model Training, which generates a
keyword-specific expectation and a micropost classification model for event detection; 3) Keyword Discovery, which applies the
trained model and calculates the disagreement between model prediction and the keyword-specific expectation for discovering
new keywords, again by leveraging crowdsourcing.

Keyword Discovery. The keyword discovery task aims at
discovering a new keyword (or a set of keywords) that is
most informative for model training with respect to exist-
ing keywords. To this end, we first apply the current model
pθ(t)(y|x) on the unlabeled microposts U . For those that con-
tain the keyword w(t), we calculate the disagreement be-
tween the model predictions and the keyword-specific ex-
pectation e(t):

Disagreement(xi) = |pθ(t)(yi|xi)− e(t)|, (1)

and select the ones with the highest disagreement for key-
word discovery. These selected microposts are supposed to
contain information that can explain the disagreement be-
tween the model prediction and keyword-specific expecta-
tion, and can thus provide information that is most different
from the existing set of keywords for model training.

For instance, our study shows that the expectation for the
keyword ‘hack’ is 0.20, which means only 20% of the ini-
tial set of microposts retrieved with the keyword are event-
related. A micropost selected with the highest disagreement
(Eq. 1), whose likelihood of being event-related as predicted
by the model is 99.9%, is shown as an example below:

RT @xxx: Hong Kong securities brokers hit by cy-
ber attacks, may face more: regulator #cyber #security
#hacking https://t.co/rC1s9CB

This micropost contains keywords that can better indicate
the relevance to a cyber security event than the initial key-
word ‘hack’, e.g., ‘securities’, ‘hit’, and ‘attack’.

Note that when the keyword-specific expectation e(t) in
Equation 1 is high, the selected microposts will be the ones
that contain keywords indicating the irrelevance of the mi-
croposts to an event category. Such keywords are also useful
for model training as they help improve the model’s ability
to identify irrelevant microposts.

To identify new keywords in the selected microposts, we
again leverage crowdsourcing, as humans are typically bet-

ter than machines at providing specific explanations (Mc-
Donnell et al. 2016; Chang, Harper, and Terveen 2016). In
the crowdsourcing task, workers are first asked to find those
microposts where the model predictions are deemed correct.
Then, from those microposts, workers are asked to find the
keyword that best indicates the class of the microposts as
predicted by the model. The keyword most frequently identi-
fied by the workers is then used as the initial keyword for the
following iteration. In case multiple keywords are selected,
e.g., the top-N frequent ones, workers will be asked to per-
form N micropost classification tasks for each keyword in
the next iteration, and the model training will be performed
on multiple keyword-specific expectations.

3 Unified Probabilistic Model
This section introduces our probabilistic model that infers
keyword expectation and trains the target model simultane-
ously. We start by formalizing the problem and introducing
our model, before describing the model learning method.

Problem Formalization. We consider the problem at itera-
tion t where the corresponding keyword is w(t). In the cur-
rent iteration, let U (t) ⊂ U denote the set of all microposts
containing the keyword andM(t) = {xm}Mm=1 ⊂ U (t) be
the randomly selected subset of M microposts labeled by N
crowd workers C = {cn}Nn=1. The annotations form a ma-
trix A ∈ RM×N where Amn is the label for the micropost
xm contributed by crowd worker cn. Our goal is to infer the
keyword-specific expectation e(t) and train the target model
by learning the model parameter θ(t). An additional param-
eter of our probabilistic model is the reliability of crowd
workers, which is essential when involving crowdsourc-
ing. Following Dawid and Skene (Dawid and Skene 1979;
Zheng et al. 2017), we represent the annotation reliability
of worker cn by a latent confusion matrix π(n), where the
rs-th element π(n)

rs denotes the probability of cn labeling a
micropost as class r given the true class s.



Expectation as Model Posterior
First, we introduce an expectation regularization technique
for the weakly supervised learning of the target model
pθ(t)(y|x). In this setting, the objective function of the tar-
get model is composed of two parts, corresponding to the
labeled microposts L and the unlabeled ones U .

The former part aims at maximizing the likelihood of the
labeled microposts:

J1 =

L∑
i=1

log pθ(yi|xi) + log pσ(θ), (2)

where we assume that θ is generated from a prior distribution
(e.g., Laplacian or Gaussian) parameterized by σ.

To leverage unlabeled data for model training, we make
use of the expectations of existing keywords, i.e., {(w(1),
e(1)), . . . , (w(t−1), e(t−1)), (w(t), e(t))} (Note that e(t) is in-
ferred), as a regularization term to constrain model training.
To do so, we first give the model’s expectation for each key-
word w(k) (1 ≤ k ≤ t) as follows:

Ex∼U(k)(y) =
1

|U (k)|
∑

xi∈U(k)

pθ(yi|xi), (3)

which denotes the empirical expectation of the models pos-
terior predictions on the unlabeled microposts U (k) contain-
ing keyword w(k). Expectation regularization can then be
formulated as the regularization of the distance between the
Bernoulli distribution parameterized by the model’s expec-
tation and the expectation of the existing keyword:

J2 = −λ
t∑

k=1

DKL[Ber(e
(k))‖Ber(Ex∼U(k)(y))], (4)

where DKL[·‖·] denotes the KL-divergence between the
Bernoulli distributions Ber(e(k)) and Ber(Ex∼U(k)(y)),
and λ controls the strength of expectation regularization.

Expectation as Class Prior
To learn the keyword-specific expectation e(t) and the crowd
worker reliability π(n) (1 ≤ n ≤ N ), we model the like-
lihood of the crowd-contributed labels A as a function of
these parameters. In this context, we view the expectation as
the class prior, thus performing expectation inference as the
learning of the class prior. By doing so, we connect expecta-
tion inference with model training.

Specifically, we model the likelihood of an arbitrary
crowd-contributed label Amn as a mixture of multinomials
where the prior is the keyword-specific expectation e(t):

p(Amn) =

K∑
s

e(t)s π(n)
rs , (5)

where e(t)s is the probability of the ground truth label be-
ing s given the keyword-specific expectation as the class
prior; K is the set of possible ground truth labels (binary

σ

θ
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e(t) ym

Amn

π(n)

Figure 2: Our proposed probabilistic model contains the tar-
get model (on the left) and the generative model for crowd-
contributed labels (on the right), connected by keyword-
specific expectation.

in our context); and r = Amn is the crowd-contributed la-
bel. Then, for an individual micropost xm, the likelihood of
crowd-contributed labels Am: is given by:

p(Am:) =

K∑
s

e(t)s

N∏
n=1

π(n)
rs . (6)

Therefore, the objective function for maximizing the likeli-
hood of the entire annotation matrix A can be described as:

J3 =

M∑
m=1

log p(Am:). (7)

Unified Probabilistic Model
Integrating model training with expectation inference, the
overall objective function of our proposed model is given
by:

J = J1 + J2 + J3. (8)
Figure 2 depicts a graphical representation of our model,
which combines the target model for training (on the left)
with the generative model for crowd-contributed labels (on
the right) through a keyword-specific expectation.
Model Learning. Due to the unknown ground truth labels
of crowd-annotated microposts (ym in Figure 2), we resort
to expectation maximization for model learning. The learn-
ing algorithm iteratively takes two steps: the E-step and the
M-step. The E-step infers the ground truth labels given the
current model parameters. The M-step updates the model
parameters, including the crowd reliability parameters π(n)

(1 ≤ n ≤ N ), the keyword-specific expectation e(t), and the
parameter of the target model θ(t). The E-step and the crowd
parameter update in the M-step are similar to the Dawid-
Skene model (Dawid and Skene 1979). The keyword ex-
pectation is inferred by taking into account both the crowd-
contributed labels and the model prediction:

e(t) ∝ 1

M

M∑
m=1

ym ×
1

|U (t)|
∑

xi∈U(t)

pθ(yi|xi). (9)

The parameter of the target model is updated by gradient de-
scent. For example, when the target model to be trained is a
deep neural network, we use back-propagation with gradient
descent to update the weight matrices.



Table 1: Statistics of the datasets in our experiments.
Dataset #Positive #Unlabeled #Test

CyberAttack 2,600 86,000 500
PoliticianDeath 900 7,000 500

4 Experiments and Results
This section presents our experimental setup and results for
evaluating our approach. We aim at answering the following
questions:

• Q1: How effectively does our proposed human-AI loop
approach enhance the state-of-the-art machine learning
models for event detection?

• Q2: How well does our keyword discovery method work
compare to existing keyword expansion methods?

• Q3: How effective is our approach using crowdsourcing
at obtaining new keywords compared with an approach
labelling microposts for model training under the same
cost?

• Q4: How much benefit does our unified probabilistic
model bring compared to methods that do not take crowd
reliability into account?

Experimental Setup
Datasets. We perform our experiments with two predeter-
mined event categories: cyber security (CyberAttack) and
death of politicians (PoliticianDeath). These event cate-
gories are chosen as they are representative of important
event types that are of interest to many governments and
companies. The need to create our own dataset was mo-
tivated by the lack of public datasets for event detection
on microposts. The few available datasets do not suit our
requirements. For example, the publicly available Events-
2012 Twitter dataset (McMinn, Moshfeghi, and Jose 2013)
contains generic event descriptions such as Politics, Sports,
Culture etc. Our work targets more specific event cate-
gories (Bhardwaj et al. 2019). Following previous studies
(Ritter et al. 2015), we collect event-related microposts from
Twitter using 11 and 8 seed events (see Section 2) for Cyber-
Attack and PoliticianDeath, respectively. Unlabeled microp-
osts are collected by using the keyword ‘hack’ for CyberAt-
tack, while for PoliticianDeath, we use a set of keywords re-
lated to ‘politician’ and ‘death’ (such as ‘bureaucrat’, ‘dead’
etc.) For each dataset, we randomly select 500 tweets from
the unlabeled subset and manually label them for evaluation.
Table 1 shows key statistics from our two datasets.
Comparison Methods. To demonstrate the generality of
our approach on different event detection models, we con-
sider Logistic Regression (LR) (Ritter et al. 2015) and Mul-
tilayer Perceptron (MLP) (Chambers, Fry, and McMasters
2018) as the target models. As the goal of our experiments
is to demonstrate the effectiveness of our approach as a new
model training technique, we use these widely used models.
Also, we note that in our case other neural network mod-
els with more complex network architectures for event de-
tection, such as the bi-directional LSTM (Chang, Teng, and

Zhang 2016), turn out to be less effective than a simple feed-
forward network. For both LR and MLP, we evaluate our
proposed human-AI loop approach for keyword discovery
and expectation estimation by comparing against the weakly
supervised learning method proposed by Ritter et al. (2015)
and Chang, Teng, and Zhang (2016) where only one initial
keyword is used with an expectation estimated by an indi-
vidual expert.
Parameter Settings. We empirically set optimal parame-
ters based on a held-out validation set that contains 20% of
the test data. These include the hyperparamters of the target
model, those of our proposed probabilistic model, and the
parameters used for training the target model. We explore
MLP with 1, 2 and 3 hidden layers and apply a grid search
in 32, 64, 128, 256, 512 for the dimension of the embeddings
and that of the hidden layers. For the coefficient of expecta-
tion regularization, we follow Mann and McCallum (2007)
and set it to λ = 10× #labeled examples. For model train-
ing, we use the Adam (Kingma and Ba 2014) optimization
algorithm for both models.
Evaluation. Following Ritter et al. (2015) and Konovalov
et al. (2017), we use accuracy and area under the precision-
recall curve (AUC) metrics to measure the performance of
our proposed approach. We note that due to the imbalance
in our datasets (20% positive microposts in CyberAttack and
27% in PoliticianDeath), accuracy is dominated by negative
examples; AUC, in comparison, better characterizes the dis-
criminative power of the model.
Crowdsourcing. We chose Level 3 workers on the Figure-
Eight1 crowdsourcing platform for our experiments. The
inter-annotator agreement in micropost classification is
taken into account through the EM algorithm. For keyword
discovery, we filter keywords based on the frequency of
the keyword being selected by the crowd. In terms of cost-
effectiveness, our approach is motivated from the fact that
crowdsourced data annotation can be expensive, and is thus
designed with minimal crowd involvement. For each iter-
ation, we selected 50 tweets for keyword discovery and
50 tweets for micropost classification per keyword. For a
dataset with 80k tweets (e.g., CyberAttack), our approach
only requires to manually inspect 800 tweets (for 8 key-
words), which is only 1% of the entire dataset.

Results of our Human-AI Loop (Q1)
Table 2 reports the evaluation of our approach on both the
CyberAttack and PoliticianDeath event categories. Our ap-
proach is configured such that each iteration starts with 1
new keyword discovered in the previous iteration.

Our approach improves LR by 5.17% (Accuracy) and
18.38% (AUC), and MLP by 10.71% (Accuracy) and
30.27% (AUC) on average. Such significant improvements
clearly demonstrate that our approach is effective at improv-
ing model performance. We observe that the target models
generally converge between the 7th and 9th iteration on both
datasets when performance is measured by AUC. The per-
formance can slightly degrade when the models are further

1https://www.figure-eight.com/



Table 2: Performance of the target models trained by our proposed human-AI loop approach on the experimental datasets at
different iterations. Results are given in percentage.

Dataset Method Metric Iteration
1 2 3 4 5 6 7 8 9

Cyber Attack
LR AUC 66.69 72.67 69.02 69.18 70.41 70.22 70.66 70.66 70.53

Accuracy 71.04 74.07 74.07 74.07 72.72 72.72 72.72 72.72 72.39

MLP AUC 60.79 66.06 70.5 72.83 76.06 75.28 75.98 75.60 75.81
Accuracy 70.37 73.06 73.06 73.40 75.42 75.08 75.42 74.41 75.75

Politician Death
LR AUC 49.37 60.69 61.32 63.45 62.71 62.72 63.07 63.50 64.68

Accuracy 76.53 82.65 83.67 83.67 82.99 83.33 82.99 82.99 82.99

MLP AUC 56.81 74.20 72.60 73.80 72.59 73.00 76.11 76.52 77.17
Accuracy 76.53 87.07 86.05 87.07 85.71 86.05 86.39 87.07 87.07

trained for more iterations on both datasets. This is likely
due to the fact that over time, the newly discovered key-
words entail lower novel information for model training.
For instance, for the CyberAttack dataset the new keyword
in the 9th iteration ‘election’ frequently co-occurs with the
keyword ‘russia’ in the 5th iteration (in microposts that con-
nect Russian hackers with US elections), thus bringing lim-
ited new information for improving the model performance.
As a side remark, we note that the models converge faster
when performance is measured by accuracy. Such a com-
parison result confirms the difference between the metrics
and shows the necessity for more keywords to discriminate
event-related microposts from non event-related ones.

Comparative Results on Keyword Discovery (Q2)
Figure 3 shows the evaluation of our approach when discov-
ering new informative keywords for model training (see Sec-
tion 2: Keyword Discovery). We compare our human-AI col-
laborative way of discovering new keywords against a query
expansion (QE) approach (Diaz, Mitra, and Craswell 2016;
Kuzi, Shtok, and Kurland 2016) that leverages word em-
beddings to find similar words in the latent semantic space.
Specifically, we use pre-trained word embeddings based on
a large Google News dataset2 for query expansion. For in-
stance, the top keywords resulting from QE for ‘politician’
are, ‘deputy’,‘ministry’,‘secretary’, and ‘minister’. For each
of these keywords, we use the crowd to label a set of tweets
and obtain a corresponding expectation.

We observe that our approach consistently outperforms
QE by an average of 4.62% and 52.58% AUC on Cyber-
Attack and PoliticianDeath, respectively. The large gap be-
tween the performance improvements for the two datasets
is mainly due to the fact that microposts that are relevant
for PoliticianDeath are semantically more complex than
those for CyberAttack, as they encode noun-verb relation-
ship (e.g., “the king of ... died ...”) rather than a simple verb
(e.g., “... hacked.”) for the CyberAttack microposts. QE only
finds synonyms of existing keywords related to either ‘politi-
cian’ or ‘death’, however cannot find a meaningful keyword
that fully characterizes the death of a politician. For instance,
QE finds the keywords ‘kill’ and ‘murder’, which are se-

2https://code.google.com/archive/p/word2vec/

(a) CyberAttack

(b) PoliticianDeath

Figure 3: Comparison between our keyword discovery
method and query expansion method for MLP (similar re-
sults for LR).

mantically close to ‘death’ but are not specifically relevant
to the death of a politician. Unlike QE, our approach identi-
fies keywords that go beyond mere synonyms and that are
more directly related to the end task, i.e., discriminating
event-related microposts from non related ones. Examples
are ‘demise’ and ‘condolence’. As a remark, we note that in
Figure 3(b), the increase in QE performance on Politician-
Death is due to the keywords ‘deputy’ and ‘minister’, which
happen to be highly indicative of the death of a politician
in our dataset; these keywords are also identified by our ap-
proach.

Cost-Effectiveness Results (Q3)
To demonstrate the cost-effectiveness of using crowdsourc-
ing for obtaining new keywords and consequently, their ex-
pectations, we compare the performance of our approach
with an approach using crowdsourcing to only label micro-
posts for model training at the same cost. Specifically, we
conducted an additional crowdsourcing experiment where



the same cost used for keyword discovery in our approach
is used to label additional microposts for model training.
These newly labeled microposts are used with the microp-
osts labeled in the micropost classification task of our ap-
proach (see Section 2: Micropost Classification) and the ex-
pectation of the initial keyword to train the model for com-
parison. The model trained in this way increases AUC by
0.87% for CyberAttack, and by 1.06% for PoliticianDeath;
in comparison, our proposed approach increases AUC by
33.42% for PoliticianDeath and by 15.23% for CyberAttack
over the baseline presented by Ritter et al.). These results
show that using crowdsourcing for keyword discovery is sig-
nificantly more cost-effective than simply using crowdsourc-
ing to get additional labels when training the model.

Expectation Inference Results (Q4)
To investigate the effectiveness of our expectation inference
method, we compare it against a majority voting approach,
a strong baseline in truth inference (Zheng et al. 2017). Fig-
ure 4 shows the result of this evaluation. We observe that
our approach results in better models for both CyberAttack
and PoliticianDeath. Our manual investigation reveals that
workers’ annotations are of high reliability, which explains
the relatively good performance of majority voting. Despite
limited margin for improvement, our method of expectation
inference improves the performance of majority voting by
0.4% and 1.19% AUC on CyberAttack and PoliticianDeath,
respectively.

5 Related Work
Event Detection. The techniques for event extraction from
microblogging platforms can be classified according to their
domain specificity and their detection method (Atefeh and
Khreich 2015). Early works mainly focus on open do-
main event detection (Benson, Haghighi, and Barzilay 2011;
Ritter et al. 2012; Chierichetti et al. 2014). Our work falls
into the category of domain-specific event detection (Bhard-
waj et al. 2019), which has drawn increasing attention due
to its relevance for various applications such as cyber se-
curity (Ritter et al. 2015; Chambers, Fry, and McMasters
2018) and public health (Akbari et al. 2016; Lee et al. 2017).
In terms of technique, our proposed detection method is re-
lated to the recently proposed weakly supervised learning
methods (Ritter et al. 2015; Chang, Teng, and Zhang 2016;
Konovalov et al. 2017). This comes in contrast with fully-
supervised learning methods, which are often limited by
the size of the training data (e.g., a few hundred exam-
ples) (Sakaki, Okazaki, and Matsuo 2010; Sadri, Mehrotra,
and Yu 2016).
Human-in-the-Loop Approaches. Our work extends
weakly supervised learning methods by involving humans
in the loop (Vaughan 2018). Existing human-in-the-loop ap-
proaches mainly leverage crowds to label individual data
instances (Yan et al. 2011; Yang et al. 2018) or to debug
the training data (Krishnan et al. 2016; Yang et al. 2019) or
components (Parikh and Zitnick 2011; Mottaghi et al. 2013;
Nushi et al. 2017) of a machine learning system. Unlike
these works, we leverage crowd workers to label sampled

(a) CyberAttack

(b) PoliticianDeath

Figure 4: Comparison between our expectation inference
method and majority voting for MLP (similar results for
LR).

microposts in order to obtain keyword-specific expectations,
which can then be generalized to help classify microposts
containing the same keyword, thus amplifying the utility
of the crowd. Our work is further connected to the topic
of interpretability and transparency of machine learning
models (Ribeiro, Singh, and Guestrin 2016; Lipton 2016;
Doshi-Velez and Kim 2017), for which humans are increas-
ingly involved, for instance for post-hoc evaluations of the
model’s interpretability. In contrast, our approach directly
solicits informative keywords from the crowd for model
training, thereby providing human-understandable explana-
tions for the improved model.

6 Conclusion
In this paper, we presented a new human-AI loop approach
for keyword discovery and expectation estimation to better
train event detection models. Our approach takes advantage
of the disagreement between the crowd and the model to dis-
cover informative keywords and leverages the joint power of
the crowd and the model in expectation inference. We eval-
uated our approach on real-world datasets and showed that
it significantly outperforms the state of the art and that it
is particularly useful for detecting events where relevant mi-
croposts are semantically complex, e.g., the death of a politi-
cian. As future work, we plan to parallelize the crowdsourc-
ing tasks and optimize our pipeline in order to use our event
detection approach in real-time.
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