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ABSTRACT
Global interpretability is a vital requirement for image classification
applications. Existing interpretability methods mainly explain a
model behavior by identifying salient image patches, which require
manual efforts from users to make sense of, and also do not typically
support model validation with questions that investigate multiple
visual concepts. In this paper, we introduce a scalable human-in-
the-loop approach for global interpretability. Salient image areas
identified by local interpretability methods are annotated with
semantic concepts, which are then aggregated into a tabular rep-
resentation of images to facilitate automatic statistical analysis of
model behavior. We show that this approach answers interpretabil-
ity needs for both model validation and exploration, and provides
semantically more diverse, informative, and relevant explanations
while still allowing for scalable and cost-efficient execution.
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• Information systems→Crowdsourcing; •Human-centered
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1 INTRODUCTION
State-of-the-art image classification methods employ neural mod-
els, generally operating as “black-boxes”. The opaqueness of these
models has become a major obstacle for deploying, debugging, and
tuning them [11, 24]; particularly in critical domains such as health,
security and justice, where the ability to understand, or, at least, to
interpret their behaviour is increasingly demanded [21, 35].

Interpretability in machine learning refers to “the ability to ex-
plain or to present in understandable terms to a human” [11] how
the model makes a prediction. It is critical to understand and im-
prove model performance, and to establish user trust in the model
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Does the model rely on cross sign and flash light, or the
blue sky for classification of ambulances?

What are the image concepts the model relies on?

Local interpretability method outputsGlobal interpretability method (ACE) outputs

Van Images

SECA outputs
Validation

Exploration

Exploration Question ?

Validation Question

VanAmbulance

Concept Relevant Class
cross sign AND flash light yes ambulance
blue sky yes ambulance

Ambulance Images

Ambulance Van

Concept Class
cross sign AND flash light ambulance
black-wheel AND white car view van
grey-road AND black car-chassis van
orange stripe AND side window AND cross sign ambulance

Figure 1: SECA generates (multi-concept) interpretations for
bothmodel behavior validation and exploration. In contrast,
state-of-the-art global (e.g., ACE [13]) or local interpretabil-
ity methods do not support multi-concept interpetability
need, and generate image patches or saliency maps (for ex-
ploration only) that require manual interpretation.

and its behaviour. To be effective, interpretability methods must: (1)
present interpretations that match humans’ mental representations
of concepts [2, 19, 22] as humans understand the world through con-
cepts associated with observable properties. Human brains process
visual information from low-level concepts such as color, contrast,
to mid-level ones such as shapes, textures, and to more abstract
semantic representations of an object. For example, an ambulance
is “a car-shaped object that has a red cross or blue star symbol on
it”. And, (2) allow for the satisfaction of interpretation needs aimed
at both model behavior validation and exploration.

A typical validation scenario occurs when a model developer
(or auditor) tests precise hypotheses on the workings of automated
decision making to ensure the system behaves as intended. In an
ambulance recognition example (Figure 1), an auditor could ask “In
the classification of ambulances, does the model focus on the red
cross and the flash lights; or does it focus on unrelated back-
ground concepts like the blue sky?”. In an exploratory scenario,
the developer would be interested in understanding the classifica-
tion behaviour of the model, but without a precise hypothesis to
test. To support both scenarios, an interpretability method should
be able to test for the presence, combination, or absence of multiple
concepts with varying granularity –e.g. a model might learn to use
an ambulance’s overall shape (coarser granularity), or the sign
on the frame and the flash light (finer granularity).
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Despite the recent advances in interpretable machine learn-
ing [6, 13, 15, 24, 39], existing methods addressing image classi-
fication fall short in meeting the above requirements. We focus on
post-hoc interpretability methods, which, in contrast to inherent in-
terpretability methods (see a detailed discussion in Section 2), can be
applied to any existing classification model. Among post-hoc meth-
ods, global interpretability methods [13, 15] support exploration
needs by automatically producing “patches” from multiple images
in the dataset (ACE [13]) that should represent one visual concept in-
ferred to be important for classification; or, for validation purposes,
require users to provide a set of images (patches) as examples of
visual concepts (TCAV [15]). Both approaches have shortcomings.
First, they require manual analysis and interpretation to associate
image patches with understandable concepts and properties [13],
or require an input set of example images that cleanly capture the
interpretation hypothesis the user wants to verify (e.g., images of
ambulance with a cross sign but without a sky background) [15].
Besides, such methods do not easily support the validation and
exploration of multi-concept interpretation. On the other hand, lo-
cal interpretability methods analyse individual images [29, 43] and
produce image-specific saliency maps, i.e. a highlight of the most
important pixels for the classification of a given image. Local meth-
ods can be adopted for global interpretability, but with significant
cognitive demand on users, both for validation and exploratory
interpretation needs: multiple images must be individually anal-
ysed to associate image regions with intelligible concepts, and the
respective concepts need to be reconciled globally and interpreted
against the classification behaviour of the model.

Arguably, a better interpretability method would combine the
ability to analyse classes of images and support multi-concept in-
terpretation for both model validation and exploration purposes
without imposing high cognitive load to its users to make sense
of interpretation outputs. With this in mind, we designed SECA,
a human-in-the-loop SEmantic Concept extraction and Analysis
framework that supports global analysis of machine behavior for
multi-concept questions. SECA generates interpretation with a rich
set of semantic concepts easily comprehensible by users. It fuses
local interpretability methods to identify image patches that are
relevant to the prediction for individual images, with human compu-
tation to annotate those patches with semantic concepts, i.e., visual
entities with types and attributes. Using the entities, it then builds
a model-agnostic structured representation of dataset images, on
which statistical analysis techniques can be applied to answer both
validation and exploratory interpretability questions. The combina-
tion of local interpretability methods, crowdsourcing, and statistical
analysis techniques allows for scalable extraction and analysis of
relevant concepts from a large number of images to facilitate vali-
dation and exploration of a model’s behavior.

We demonstrate the correctness, informativeness, and effectiveness
of SECA through several interpretability scenarios and evaluation
protocols. To deal with the lack of ground truth of model behav-
ior (a common issue in interpretability literature [11]), we design
controlled experiments where several types of pre-defined model
biases are induced, ranging from simple visual entities to complex
ones related to image scene understanding. We further conduct
empirical studies to understand the cost/effectiveness trade-off with

varying number of images, granularity of annotations, and crowd
involvement. In summary, we make the following key contribu-
tions:
• A novel human-in-the-loop interpretability framework that al-
lows for statistical analysis of global model behavior through
rich multi-concept interpretability questions.

• A benchmark for evaluating global interpretability methods for
multi-concept questions, including interpretability scenarios across
three image classification tasks with different types of biases.

• An extensive evaluation of the framework, demonstrating its
effectiveness for both model validation and exploration, and ana-
lyzing its configurations for optimal cost/effectiveness trade-off.
A replication package containing code, datasets, and unabridged

experimental results is available on the companion page1.

2 RELATEDWORK
We first provide an overview of existing interpretability methods,
then focus on approaches specific to image classification, and finally
discuss works on human-in-the-loop machine learning.

2.1 Machine Learning Interpretability
Existing interpretability methods can be categorized in two ways: i)
local vs. global, depending on the scope of data instances interpreted
being individual instances or class of instances; or ii) post-hoc vs.
inherent interpretability methods, depending on whether the goal is
to provide interpretations for an existing model or constructing self-
explanatory models. Inherent interpretability is achieved by adding
interpretability constraints in model learning to enforce feature
sparsity [12], representation disentanglement [44], or sensitivity
towards input features [33]. Another popular approach is attention
mechanisms, which identify parts of the input that are attended
by the model for specific predictions [7, 37]. Turning an existing
model into an inherently interpretable model might be costly for
users and might lead to a drop of model performance. In contrast,
post-hoc interpretability methods can be applied without model
modification or retraining, and have therefore attracted growing
attention. Our SECA is a post-hoc interpretability method.

A key challenge in post-hoc interpretability is interpretation
fidelity, i.e., ensuring that the generated interpretation accurately
describes model behavior. This can be achieved in several ways. Koh
and Liang [16] propose a perturbation-based method that identifies
training instances most responsible for a given prediction through
influence functions, which estimate changes in model parameters
as an effect of changes in the training instances. Gradient-based
methods calculate the gradient of the output with respect to the
input to derive the contribution of features [5, 25, 29]. Ribeiro et
al. [24] fit a simpler model (with interpretable features) around the
test instance to ensure local consistency between the interpretation
and model prediction. A simple interpretable surrogate model can
be learned to approximate the original model’s predictions on a
representative sample of the data [32]. Our approach is inspired
from this last idea, as it generates interpretations using statistical
tools such as association rule mining and decision trees (on human
intelligible concepts) that are self-explanatory.

1https://sites.google.com/view/webconf21-whatdoyoumean-balayn
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2.2 Interpreting Image Classification
The most extensively studied interpretability approach for image
classification is saliency, a local interpretability post-hoc method
that highlights the most important pixels of an image for model
decisions in what is called a saliency map [29]. “Importance” is
defined as the sensitivity of decisions to the pixels with respect to
a specific class. It is measured either by computing the gradient of
the activation function for that class with respect to every image
pixel [27, 29], or by passing the activated features of each layer of
the model backwards into a reverse neural network model until
the activations are mapped to the actual inputs of the model [6, 28].
Those approaches are likely to generate noisy results highlighting ir-
relevant pixels. To deal with that, methods such as SmoothGrad [31]
and the Integrated Gradient [33] have been proposed.

Due to the intrinsic lack of semantics in pixels, global inter-
pretability is challenging in image classification. Kim et al. [15]
introduce TCAV on top of their notion of Concept Activation Vec-
tors (CAVs), which represents the translation from the internal
states of a model to human-understandable concepts. The impor-
tance of a concept for model predictions is measured by calculating
the directional derivative w.r.t. the corresponding CAV, i.e., the
sensitivity of model predictions to changes in inputs towards the
direction of the concept. A main disadvantage of such an approach
is that CAVs are obtained by training a linear classifier between a
concept’s examples and counterexamples; as a requirement, users
need to provide sets of (50-150) example images for the training.
Such a process is not only expensive, but sometimes also infeasible
when the concept for testing comprises multiple concepts: users
need to prepare a number of example images that each cleanly cap-
tures the multiple concepts that the user wants to verify. Moreover,
the method is designed for model behavior validation; exploratory
analysis is possible, but clearly expensive.

Ghorbani et al. [13] introduce ACE to automatically extract vi-
sual concepts, by aggregating related local image segments across
the data. It relies on automatic image segmentation and clustering
to obtain image patches potentially representing the same concept,
and then uses TCAV to test for its importance. The quality of gen-
erated interpretations is highly dependent on the effectiveness of
image segmentation and clustering: our experiment shows that
ACE is prone to identify patches representing a concept related to
low-level visual information (e.g., color), and that it fails at identify-
ing patches of concepts comprising multiple concepts (Section 5.2
and 5.3). What is more, image patches generated by TCAV are not
self-explanatory, and need to be analysed and interpreted by users.

By a combination of local interpretability and crowdsourcing
techniques, the SECA framework can address both issues of fidelity
and cognitive load by 1) relying on human annotations to present
semantic concepts at different conceptual granularities, and 2) by
enabling multi-concept model validation and exploration.

2.3 Human-in-the-Loop Machine Learning
Human-in-the-loop machine learning [36] has been traditionally
concerned with crowdsourced training data annotation [10] and
crowd-collected samples [8]. A closely related line of work is “learn-
ing from crowds”, where researchers study models that can learn

from noisy crowd labels [23]. Unlike the conventional learning set-
ting, these models are concerned with learning parameters of the
annotation process (e.g., annotator expertise, task difficulty) and
inferring true labels from noisy ones, possibly by incorporating
(deep) active learning to reduce annotation efforts [38, 40].

Recent works address the use of human computation to debug
machine learning systems. Nushi et al. [20] use crowdsourcing to
identify weakest components of a machine learning pipeline and to
propose targeted fixes. Yang et al. [41] introduce a human-in-the-
loop system for debugging noisy training data using an automatic
method for inferring true labels and crowdsourcing for manual
correction of wrong labels. Hu et al. [14] introduce a crowdsourcing
workflow for detecting sampling biases in image datasets.

The use of human intelligence for interpreting machine learning
models has been limited to involving humans as users for evaluating
the interpretability methods, e.g., by observing if the interpretations
help users choose a better model [11, 24]. Unlike those methods,
SECA involves human computation as an integral component to
identify relevant concepts, which is of crucial importance to make
interpretations intelligible and to support multi-concept queries.

3 DESIGN PRINCIPLES AND CHOICES
We design SECA with the following key requirements in mind: (1)
Intelligibility, the generated interpretation output should be compre-
hensible by its users; (2) Effortlessness, the cognitive load imposed on
users should be minimal; (3) Utility, the framework should support
both confirmatory or exploratory questions for model validation
and exploration; (4) Fidelity, the generated interpretation should
correctly and comprehensively describe the model behavior; (5)
Scalability and cost-effectiveness, the framework should be scalable
and effective under reasonable cost. In the following, we describe
our design choices following from each of the above requirements.

3.1 Intelligibility
To cater for intelligibility, we draw inspirations from the cognitive
psychology literature on human reasoning and concept creation.
Aerts [2] considers that concepts can be associated with observable
properties, and the degree of association, called typicality, can be
measured, typically by asking humans to rate it on a Likert scale.
For instance, the concept ambulance can be associated with the
property cross sign. Clearly, a property could be a concept itself,
or be composed of multiple concepts [3]. The Representational
Theory of Mind proposes a compositional semantic [19], where
two or more “noun” concepts, or “noun” and “adjective” concepts
can be combined using syntactic rules.

In this work, we consider interpretability needs aimed at analysing
the degree of association (typicality scores) between concepts ap-
pearing in images (e.g. cross sign) and the classification labels
–also concepts (e.g. ambulance)– that a machine learning model as-
signs to them. Those concepts correspond to entity types (nouns, e.g.
cross sign) or entity attributes (adjectives, e.g. red) drawn from a
vocabulary. Interpretability needs are expressed as textual queries
over concepts, possibly using logical operations –conjunction (AND),
disjunction (OR), and negation (NOT). An example of query (section 5)
is: “orange-stripe AND light AND NOT chassis”.
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3.2 Utility and Effortlessness
We represent images and classification labels through the list of
concepts, i.e. entity types and attributes they contain. Without loss
of generality, in the following we consider only classification labels
related to a single concept (e.g. male/ female). We only consider
a binary representation of a concept’s relation to an image (pres-
ence/absence of a concept); a weighted representation (e.g. a value
between 0 and 1) is an extension that we leave to future work. By
explicitly identifying concepts on a per-image basis, we can apply a
set of statistical analysis tools to identify the importance of concepts
(individual or combined) across images in relevance to model pre-
dictions. This lessens the users cognitive load –many other global
interpretation approaches rely on human user to identify relevant
concepts across several images–, and allows to investigate more
diverse model behavior.

3.3 Fidelity and Scalability
To ensure interpretation fidelity, we use only relevant concepts.
To do so, we rely on existing local interpretability methods: we
compute the saliency maps for (a subset of) images on which a
model makes predictions, and create semantic descriptions of the
entity types and attributes in the areas highlighted in the maps.

Road

Building

Car

Bus,
van

Male / femaleAmbulance / van

Sky

Truck

Road
Person

Road
Wall

Road

Car

Person

Figure 2: Automatic semantic segmentationwithDeepLabv3.
The truck and ambulance (left) appear as single segments
while more specific entities like stripes and flash light
are probably used by the model. The silhouettes of the in-
dividuals (right) form a single segment and the background
another, whereas amodel likely uses finer-grain entities (e.g.
hair length, face shape).

This annotation process cannot currently be automated, as state-
of-the art segmentation and object recognition methods are not
accurate enough to uncover entities or attributes relevant to a
model’s decisions. In Figure 2 examples, the granularity of the
segmented entities is large and the annotations vague. For instance,
an ambulance is segmented as one entity and annotated as bus.

Hence, SECA adopts a crowdsourcing approach, where crowd
annotators are asked to identify and describe with a textual anno-
tation each entity in the salient image areas. Such approach can
provide high fidelity and, while incurring some unavoidable costs,
be scalable. Section 4 describes how SECA tackles obvious issues of
annotation coherency across images. In the experiments of section 5
and section 6, we empirically study fidelity and cost-effectiveness,
showing the quality and feasibility of the approach.

4 THE SECA FRAMEWORK
Figure 3 presents an overview of SECA (SEmantic Concept extrac-
tion and Analysis). Given as input (1) a trained image classification

model and (2) a dataset, SECA can answer interpretability questions
for validation and exploration purposes. (C1) Images in the dataset
and their corresponding predicted labels are passed through a local
interpretability method. The method generates saliency maps that
indicate pixels relevant for the model prediction. (C2) All maps
and corresponding images are sent to human annotators, to collect
semantic annotations about the types and attributes of entities rep-
resented by the salient pixels. (C3) Annotations across images are
reconciled, and (C4) a structured and consolidated representation of
all images is built. Finally, (C5) data analysis tools are applied, and
single and multi-entity concepts and their typicality scores (degree
of association of the concept and a target label) are outputted.

C1: Saliency Map Extraction. Saliency maps extraction is neces-
sary to provide accurate interpretations while reducing annotation
effort: clearly, annotating an entire image would be more expensive,
and it could introduce concepts that are not germane to a model’s
behaviour interpretation. SECA is agnostic to the employed local
interpretatibility method. We opted for SmoothGrad [31], which
is sensitive to the parameters of a model (thus catering for more
accurate capturing of a model behaviour) while minimising noisy
results (i.e., highlighting irrelevant pixels). To further reduce an-
notation efforts, saliency map extraction is performed only on a
random sample of all images. An appropriate setting of the num-
ber of sampled images depends on the complexity of the machine
learning task, e.g., number and diversity of relevant concepts. We
study the quality/cost trade-off related to this number in section 6.

C2: Saliency Maps Annotation. The annotation task combines
two typical crowdsourcing activities: drawing bounding boxes and
labelling (parts of) images. We ask workers to (1) identify, for each
salient pixel area, the entity types corresponding to recognizable
object shapes, and the entity attributes characterizing the area, e.g.,
its colors, textures or object property; (2) draw bounding boxes
around the pixels corresponding to these types and attributes (we
use bounding boxes instead of continuous curves as it is easier and
faster for crowd workers); (3) provide a textual description (one
word) of the identified types and attributes. For example, if the
saliency map focuses on the blue cross image area on the trunk
of an ambulance, the annotation would be type: cross; attributes:
blue; for a gender classification task, a saliency map focusing on
a person’s short black hair results in type: hair; attributes: black,
short. Entity-attribute information per salient image area is rela-
tively easy to create by annotators, relevant to interpretation (as
they are based on saliencymaps of model predictions), and naturally
intelligible for model developers and auditors. We ask annotators
to provide fine-grained annotations, as fine-granularity entities can
be later aggregated. Automatic checks are implemented to ensure
that each image has at least one bounding box, and each bounding
box has at least one entity type and attribute annotated. We em-
ploy multiple crowd workers per task to maximize the number and
diversity of relevant annotated concepts. We retain concepts anno-
tated by workers who spend more than a pre-defined amount of
time on each image. The annotation task design is available on the
companion page. Parameters of the C2 component that affect the
cost-effectiveness of SECA are annotation granularity and annotator
type (e.g. experts vs crowds). We study their impact in section 6.
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Figure 3: Overview of the SECA framework.

C3: Annotations Reconciliation. Annotation reconciliation is
required as no pre-defined vocabulary of entity types and attributes
is imposed on annotators, thus leading to diversity in vocabulary
and/or granularity. First, we correct spelling mistakes with spell-
checkers 2, normalize the annotations by removing white spaces
and converting all characters to lowercase, and rename synonyms
or highly similar annotations using a reconciled term. The recon-
ciled term is obtained by automatically clustering all the collected
terms represented by word embeddings (pre-trained FastText em-
beddings), and picking the one closest to the centroid of each cluster.
We use K-mean clustering, where 𝑘 is chosen by identifying the
value that leads to distributions of Silhouette score per cluster that
do not exhibit negative values and that are as much uniform as
possible across clusters. Features for the tabular representation are
then built by mapping each annotation to one cluster or the asso-
ciation of multiple clusters. E.g., wheel is associated to the cluster
containing this term, while front light is associated to the super
cluster that combines the clusters of front and light. Annotation
errors should not propagate as we later retain only interpretations
that are statistically significant. In future work, we plan to look into
(dynamically) controlling for vocabulary in the annotation task.
C4: Tabular Image Representation. The reconciled annotations
of the salient areas of each image are stored in a de-normalised
form. We create a binary-value column for entity type-attribute
combinations (like hair-short-black), but also columns for each
component (hair, and short, and black). For each image, we store
which entity types and attributes pairs have been connected to
any of their salient pixel areas. This denormalized storage helps
with further statistical analysis and querying: for instance, a user
could investigate three hypotheses: is the cross logo indicative of
ambulances identified by amodel predictions? Are orange crosses
even more relevant? Has the model learned to check solely for the
color orange (strongly correlated with ambulances)? The entity
type cross can address the first question, the pair cross-orange
the second, and the attribute orange the third.
C5: Query Answering. This component generates interpretations
to fulfill both interpretation needs of model validation and explo-
ration. The interpretations take the form of tuples corresponding
to a) a concept, b) a prediction label, and c) a typicality score that
measures the importance of a concept in predicting the label by the
model. The tuples are then ranked based on the typicality scores.

2SymSpell: https://github.com/wolfgarbe/symspell

Statistical tools. The most relevant concepts to include in output are
identified through statistical tests assessing the correlation between
each concept (i.e. column) present in the tabular representation and
the predicted labels. We use the Chi-Square independence test [46],
to check whether a concept and the label are independent. We
retain concepts that are not independent significantly (p-value <
0.05). We compute the Cramer’s V test [1] (a test commonly used in
interpetability literature) on the retained concepts to obtain a typi-
cality score that measures their degree of association with the labels.
We also perform a frequency analysis of each concept per class, to
identify concepts relevant for multiple classes simultaneously.

To facilitate exploratory needs, we pre-compute combination of
concepts as follows: for each concept found significant, we add to
the tabular representation a column with the complementary of
the original column of the concept –this encodes the NOT operator
of the concept, i.e. its absence. We also add columns that encode
the logical AND combination of concepts (e.g. if wheel and light
are found significant, we append a wheel AND light column). We
then repeat the process of computing the statistical tests to identify
the significant concepts among these new columns. Obviously, it is
possible to explore all possible combinations of concepts; without
loss of generality, in this paper we limit to pairwise combinations.

For model validation purposes, users can query over the concepts
present in the tabular representation, possibly using logical oper-
ators. If not existing, the query is translated into a new column
encoding the queried (multi-entity) concept. Statistical tests are
then applied to establish the significance of the new column.
Rule extraction tools. The set of concept combinations is extended
through rule extraction methods, uncovering multi-entity concepts
that involve more than one AND or NOT logical combination. We em-
ploy association rule mining algorithms and decision tree classifiers.
Association rules provide indications on the co-occurrence rela-
tionships between concepts within the rules. We apply the Apriori
algorithm [4] on the original tabular representation, and constrain
it to generate rules where the rule bodies are image concepts and
the rule heads are the prediction labels. We use the lift score (a
measure of the importance of a rule) as the typicality score of the
rules. Unlike association rules that only captures co-occurrence
relations, rules extracted from decision trees [9] contain numerical
threshold for each concept. We use accuracy and frequency of the
rule as its typicality scores. Decision trees require sufficient training
data to be employed, so their applicability is conditional to the
amount of considered images, but their output is richer.

https://github.com/wolfgarbe/symspell
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5 PERFORMANCE EVALUATION
We evaluate the interpretation performance of SECA by investigat-
ing two questions: Q1: how correct are interpretations provided by
SECA for uncovering biased behaviors?, and Q2: how informative are
those interpretations in comparison to other interpretability methods?

5.1 Experimental set-up
To date, no benchmark exists to measure the performance of in-
terpretability methods for multi-concept questions. Inspired by
previous evaluations [15], we design the following procedure.

5.1.1 Evaluation process. 1) Correctness. We consider interpreta-
tions correct if they highlight the concepts used by a model to make
its predictions. Correctness is assessed by comparing these inter-
pretations to a ground truth in controlled experiments. As such
ground truth is not readily available, we generate it by biasing the
models’ behavior, i.e. we force models to “focus” on certain types
of concepts that are exclusive of different classes. We create this
bias either by injecting visual entities into images (e.g. adding time
stamps to each image of a selected class), or by re-sampling the
dataset based on existing entities (e.g. making sure that all images
of a class present an object from an angle different from images of
other classes). We verify that the trained models learn these biases
by computing the training accuracy: accuracy close to 1.0 indicates
the models fit the data very well, probably thanks to the bias which
is easy to pick up on. To further evaluate the correctness of SECA,
we check its ability to highlight differences in “less obvious” (or less
skewed) variations of model behaviors that are due to differently
(less) biased composition of training datasets, or to the variations
in the model architectures, under the assumption that these models
should rely partly on different concepts to make their predictions.
All these interpretability scenarios are summarized in Table 1.
2) Informativeness. Interpretations are informative if they uncover
concepts that are diverse – presence of single and multi-entity con-
cepts with various logical connections, and actionable for model de-
bugging – concepts that show a potential issue and that are enough
informative to act on them, e.g., by modifying the distributions of
the corresponding visual entities in the training dataset.

5.1.2 Evaluation details. 1) Learning tasks. We select three classifi-
cation tasks from two popular datasets for computer vision bench-
marking: a gender classification task (T1) from pedestrian images
using the PA-100K dataset [17]3; a three-class “fish” classification
task (T2) containing lobster, great white shark and tench images; a
two-class vehicle classification task (T3) with moving van and am-
bulance images from the ImageNet ILSVRC-2012 dataset [26].4 We
crop and rescale the dataset images to input them to the machine
learning models. We balance the data for equal representation of
the classes (49000 images for T1, 4500 for T2, 3000 for T3).5

2) Machine learningmodels.We experimentwith Inception V3 [34](M1)
and VGG16 [30](M2), both pre-trained on ImageNet, and fine-tuned
on the evaluation datasets. Those models were shown to learn
different feature representations [45].

3We acknowledge the limitations of a binary gender, but no other dataset was found.
4This task is inspired from [18] that hints at biases in background of these images.
5Our pre-processed dataset will be made available upon acceptance of the paper.

Table 1: Summary of the interpretation scenarios.

Task Bias injection

T1: gender D1-D4: text and color visual entities
D5.1 / D5.2: original data / orientation bias

T2: fish BM1.1 / BM1.2: original data / fine-tuned model

T3: vehicle BM2.1 / BM2.2: original data / fine-tuned model
ML model M1 / M2: Inception V3 / VGG16

3) Bias injection in Data. Inspired by Yang and Kim [42], from the
PA-100K we create 4 experimental datasets by injecting text as
visual entities into the pedestrian task data: Date dataset (D1): date
stamps on the female images and datetime stamps on the male
ones – the model should rely on the presence or absence of the
entity type time stamp; Color dataset (D2): white and yellow dates
respectively on the female and male images –the model should
rely on the white and/or yellow color attributes; Date City dataset
(D3): date, or datetime and city name in the female images,
datetime, or date and city name in the male images –the model
should rely on combinations of entity types; Colored-Date dataset
(D4): white dates or yellow datetimes in the female images,
and yellow dates or white datetimes in the male images –the
model should rely on pairs of color and entity types. In Orientation
dataset (D5.2), we resample images of PA-100K (D5.1) by imposing
a class-specific pedestrian orientation – all male images have
a front orientation (i.e. the pedestrian face is seen), and all
female images a back orientation. Models trained on it should
learn concepts characterizing the front and back of a person. These
datasets should bias the model towards diverse concepts based on
different entity types, attributes and their combinations, exactly
what an interpretability method should uncover.
4) Bias injection in Model Architectures.We create different model
behaviors to compare by using the pre-trained models to make
predictions on the fish (BM1.1) and vehicle tasks (BM2.1), and by
fine-tuning these models solely on the target classes of these tasks
(i.e. training the models further only with the data of these classes)
(BM1.2, BM2.2). Fine-tuning should bias the behaviors towards
background concepts as these classes bear strong skew towards
background entities (e.g. sharks are almost all in the ocean, tench
with a fisherman next to a forest or grass, lobsters on a plate).
5) Baseline.We compare SECA interpretations to the only automatic
interpretation approach in literature, ACE [13]. We do not consider
TCAV [15] because it requires input “query” concepts. The study
on the relationship between input patches and interpretation per-
formance is beyond the scope of this paper. ACE outputs sets of
10 image patches, that should be interpreted by the user as single
concepts. We retain ACE’s sets that have a p-value under 0.05. It
is generally difficult to associate meaningful semantic concepts to
the sets, because their patches contain different entity types, thus
making the underlying concept hard to identify. E.g., the underlying
concept for image patches of grey water, grey shark fin, and
grey shark stomach is ambiguous (could be the grey color and/or
shark body parts)6. We retain recognizable visual concepts that are
present at least in 5 of the 10 example patches of a set.

6The companion page reports highly ranked non-recognizable concepts from ACE.
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Table 2: Example interpretations of SECA on the pedestrian
classification task with simple injected biases.

Bias type Output interpretations (rank - Cramer’s value)

date (D1) hour, NOT hour, minute, NOT minute (1-.93), hour AND
minute(2-.9), day AND minute(4-.47), day(10-.24)

color
(D2)

yellow-year(1-.96), yellow(2-.94), white(3-.83), yellow-day(4-
.82), yellow-month(5-.81), white-year(6-.72)

date city
(D3)

NOT city AND NOT minute(1-.5), NOT city AND NOT hour(2-.49),
city AND NOT hour(3-.46), city AND hour(4-.45)

colored
date (D4)

yellow-hour(1-.6), yellow-minute(1-.6), white-minute(2-.53),
white-hour(3-.52), yellow-day AND yellow-year(4-.37)

6) Annotation of Saliency Maps. To avoid confounding factors from
crowd work ambiguity, in these experiments trained annotators
(the authors) annotated the saliency maps, with agreement reached
on the fine concept granularity. After experimenting on the learning
tasks, we set 𝜎 = 5, 𝑛 = 10 for SmoothGrad. For every task, the
annotators annotated 300 images – as detailed in section 6, this
amount is sufficient to cover concepts relevant to model behavior.

5.2 Results: Correctness
In the following tables, we only report the simple and multi-entity
concepts that appear at the top of the rank, from highest to lowest
typicality scores, until 0.2 Cramer’s value (threshold explained later).
We denote in italic concepts identified by both SECA and ACE.

5.2.1 Sanity checks. Table 2 provides an overview of the interpre-
tations generated by SECA for the bias injection datasets D1-D4.
The results show that SECA identifies all those biases we injected.
For instance, for D1, concepts around hour and minute are correctly
picked up by the statistical tests, the mined rules and the decision
tree and associated to the female class, while the NOT operator
provides the concepts corresponding to their absence in the male
class. The AND operator and the pairs of types and attributes identify
the correct combinations of concepts also in the colored date and
date city cases. The output include few possibly irrelevant concepts,
always having Cramer’s value below 0.2. These concepts are either
outliers, i.e. concepts that impact the model’s behavior at a low fre-
quency, or noise from the saliency maps (concepts that are spatially
close to the main salient visual elements). For instance, the concept
coat (not in the table, Cramer’s value 0.19) is significant in D3, as
it always appears next to the text elements, and it is present in 13%
and 2% of the female and male images respectively.

5.2.2 Concept correctness. SECA also provides relevant concepts
for the learning set-ups with biases induced by resampling (D5,
BM1.2, BM2.2), as shown in Tables 3 and 4. For instance, for BM1.2,
concepts matching the background bias are uncovered, e.g. water
for the shark, grass and trees for the tench, and plate for the
lobsters, while these concepts are not identified as relevant in
BM1.1. For D5, identified concepts match with the orientation bias
such as hair-related concepts for females, and face-related concepts
for males (e.g. cheek, jaw, nose), while for the “unbiased” task, the
concepts focus on the hairstyle. The NOT operator exposes even
more the bias, since concepts that combine the hair and NOT an
element of the face appear more typical than only the hair (e.g.

Table 3: Interpretations outputted by SECA using statistical
testing and by ACE on the different learning task set-ups.
Concepts in italic are captured both by SECA and ACE.

Bias Met. Interpretations (rank - Cramer’s or TCAV value)

Fish (T2)
yes SECA tench_body(1-.9), lobster_claw(2-.83), blue-water, green,

beige, water(6-.7), face AND tench_body(8-.67), face(10-.65),
grass(14-.58), green-grass(14-.58), trees(19-.47), plate(25-.35)

ACE white OR light-grey(1-.99), white OR beige(2-.9)

no SECA lobster_claw(1-.9), tench_body(2-.86), shark_body(3-.82),
grey-shark_body(4-.81), orange(5-.8), orange-lobster_claw(6-
.79), shark_fin(7-.69), tench_fin(9-.67), water, water AND
shark_body(12-.6), yellow-green(14-.57), white-plate(32-.31)

ACE orange-lobster, grey-blue water OR shark_body, grey-shark,
blue- water OR blue-shark_body OR grey-shark_body, blue
OR grey OR green back, yellow OR grey(1-1.0), grey shirt OR
tench(2-.96), white-dish(3-.86)

Vehicle (T3)
yes SECA light(1-.61), blue-light(3-.53), orange blue(4-.46), blue-

light AND grey-car_side(5-.45), stripe-car_side AND orange-
car_front(6-.43), cross, light AND cross(9-.39), road(10-.32),
chassis AND wheel, black-car under(11-.28)

ACE light_grey-car_side OR sky OR road, black-wheel OR back, grey-
road OR car_side OR car_inside(1-1), letters, black-chassis(2-
.98), dark-grey OR black-wheel(3-.97), white-back(4-.91)

no SECA stripe(1-.5), windowAND stripe(2-.5), stripe AND car_side(3-
.46), stripe AND mirror(4-.44), stripe AND tire(4-.44), orange,
orange-stripe(5-.38), stripeAND chassis(6-.28), white(15-.2)

ACE black-bumper, black-tire OR gray-tire, black, orange OR red(1-
1.0), gray-window OR gray-bumper(2-.99), black-chassis(3-
.69), black OR gray(4-.18), tire(5-.15),white-sky(6-.05), orange-
letters OR red-letters(7-.01)

hair AND NOT nose). When comparing the two machine learning
models M1, M2, 7 out of the top 10 concepts are the same but with
a different ranking, reflecting that the models learned similarly
but still with differences. For example, the shark fins and tench
heads are used by Inception V3 and not VGG, which instead looked
at the presence of a shark head with a higher typicality score.

The typicality scores are also relevant, as they are similar for
concepts that appear with comparable frequency in the different
classes. The scores evolve correctly when comparing models’ be-
haviors: e.g., simple hair concepts have around 0.7 Cramer’s value
in the orientation bias data (D5.2) but are not even significant for
the “unbiased” case (D5.1) since the model needs hair length.

5.2.3 Concept Coverage. Compared to ACE as shown in Tables
3 and 4, SECA generally provides a more complete set of correct
concepts, allowing for a more accurate understanding of a model’s
behavior. ACE identifies mainly concepts that models rely on to
classify images from every class, thus not discriminative (e.g. wheel
is used to identify both ambulances and vans); these are also identi-
fied by our frequency analysis. SECA also uncovers certain entity
types present in single classes, that are missed by ACE (sometimes
ACE outputs some color attributes that might relate to them). For
instance, in D5.1, ACE outputs mostly colors that appear possibly
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Table 4: Interpretations of SECA using statistical testing, rule
mining and decision trees and of ACE on the gender classi-
fication task with and without orientation bias.

Cl. Met. Interpretations (ranges of typicality score)

Orientation bias (D5.2)
F Stat. hair, black-hair(.7-.6), long, long-hair, black-hair AND long-

hair(.6-.4), shirt AND hair, medium-hair(.4-.2)

Rule long AND grayAND black, long-hairANDblack-hair, long-hair,
long(1.8-1.6), black-hair AND gray-back(1.4-1.1)

Tree long(.275), black, road, white, red(.06-.02)

ACE dark-gray hair OR shirt(1-.97), gray shirt OR back(.8-.6)

M Stat. neck(.7-.6), cheek, cheek AND neck(.6-.4), jaw, cheek AND jaw,
face, neck AND jaw, nose, shirt AND cheek(.4-.2)

Rule hair AND neck, black AND short, black-hair AND short-hair,
short (1.6-1.4), neck, hair AND ear, ear(1.4-1.1)

Tree car, neck, forehead, short, ear(.06-.02)

ACE gray, white OR gray shirt, gray sidewalk OR shirt(1-.97), light-
brown skin(0.8-.6)

No injected bias (D5.1)
F Stat. long, long-hair, longANDblack, long-hair AND black-hair(.6-.4),

long-hair AND gray-back, gray-sidewalk-hair(.4-.2)

ACE gray-sidewalk, gray-back, brown-hair OR back(1-.97)

M Stat. short, short-hair, black-hair AND short-hair(.6-.4), short AND
gray, neck, hair AND neck, short AND brown, ear(.4-.2)

ACE white-shirt OR back(1-.97), gray-sidewalk(.8-.6)

in pair with entity types, e.g. brown color from hair or background
for the female class, white color with a shirt or background for
the male class, gray color for both classes. Our frequency analysis
showed that these colors are salient in both classes rather equiv-
alently (e.g. gray appears in 59% of female and 68% of the male
images, gray background in 22% and 30% respectively), meaning
they are not the solely used concepts. ACE does not provide any
additional insights, but SECA also uncovers concepts relevant for
individual classes, primarily related to hair length and presence of
ear and neck for the male class –entities often hidden under the
hair in the female images.

5.3 Results: Informativeness
The results obtained on the “unbiased” set-ups (BM1.1, BM2.1, D5.1)
in Tables 3, 4 show that we not only obtain correct concepts, but
these concepts are also highly informative about a model’s behav-
ior, whereas concepts identified by ACE provide fewer and less
actionable insights - the prevalence of color-related concepts over
entity type-related concepts makes, arguably, dataset modification
more difficult. Particularly, the interpretations provided by SECA
are more clear and intelligible, more diverse, and more precise.

5.3.1 Concept Intelligibility. ACE mainly highlights color related
concepts that we can only sometimes associate with entity type con-
cepts. In contrast, our approach outputs more fine-grain concepts
with diverse entity types. This is probably due to technical limita-
tions of the clustering algorithm used in ACE, that cannot precisely
cluster entity types, but mostly color attributes. For instance, in

BM1.2, ACE highlights white, light gray (probably coming from
the plate, or from face or hand color), the gray color (shark skin or
the background) for the shark, etc. These concepts are probably all
correct, but are difficult to interpret since their provenance is not
certain. Our approach on the contrary identifies the entity types
that these attributes are associated to (e.g. green-grass, blue-water),
thanks to the entity type-attribute pairs. Similarly, in D5.2 Table 4,
ACE associates the female label to dark (hair or background) and
pale colors (clothe or background), and male to pale and gray
colors (clothe, background or faces). While it seems incorrect com-
pared to our approach, extrapolating with our knowledge of the
task, we see that they partly relate to face or hair concepts (i.e.
the injected biases). Consequently, our interpretations are more
actionable as concepts are traceable to visual entities in the dataset.
Identifying pairs of entity types and attributes allows to uncover
surprising and spurious biases, that are not clearly exhibited by
ACE, but on which the dataset could be redistributed to mitigate the
biases. For instance, in D5.1, SECA shows that the model primarily
relies on the hairstyle, especially the stereotype of long / short
hair, rather than pedestrian morphology. It also exhibits strong
correlations between hair and dark colors, due to the low diversity
of the dataset collected solely in Hong Kong.

5.3.2 Concept diversity. The diversity in the nature of the con-
cepts outputted by SECA, such as concept combinations and ab-
sence of concepts, allows to uncover richer behaviors than with
ACE in Table 3. For instance, in BM2.1, SECA shows that a) the
co-occurrence of a vehicle side view and a colored stripe in-
dicates an ambulance, but the co-occurrence of this view and a
chassis indicates a van according to the statistical tests; b) the co-
occurrence of a white vehicle side, a black tire and an orange
stripe indicates an ambulance according to the mined rules; c)
not having stripes and flashing light or having stripes and
no light are associated with the van respectively with 0.47 and
0.44 Cramer’s value (stripes are often indicative of ambulances),
using AND and NOT operators. ACE misses these correlations that
require the identification of absence concepts and the ability to
calculate the significance of multiple concepts simultaneously – it
would require image patches with multiple concepts represented
next to each other, like a tire and a flashing light.

5.3.3 Interpretation Richness. The exploration tools of SECA allow
to explore various, precise model behaviors that other approaches
do not uncover, and that might not be straightforward to query.

While the frequency-based analysis and the statistical tests iden-
tify simpler significant concepts (in validation, they allow the user
to query combinations of concepts however), association rule min-
ing uncovers more complex combinations, e.g. Table 4 “long AND
gray AND black” has the highest typicality. Simply by varying the
configuration of the rule mining algorithm, it is possible to focus
on diverse interpretation goals, such as finding frequent concepts
by filtering out concepts with low support, or finding complex con-
cepts that are less frequent by lowering such threshold. E.g., in
BM1.1, the rule tench head AND tench body AND tench fin has
a top lift score but is fairly rare in the data, hence it is outputted
only with a support threshold under 0.2.

Decision trees discover complex behavior rules, and the informa-
tion attached to them tell how common they are. For instance, in
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D5.1, the tree shows that NOT long AND NOT ear AND NOT background
AND NOT black AND NOT road classifies males with 96% accuracy
for 25 out of 300 records – which matches the intuitions about
the data obtained from the statistical tests. Concepts appearing in
the higher parts of the trees are accurately distinctive of the two
classes (e.g. long hair is the first identified concept). Concepts in
lower level do not correspond to expectations for the unbiased tasks:
background elements appear as salient as parts of the body such as
the ear or neck that we found are more important using the other
methods. Because there are many visual elements but few rows in
our tabular data (e.g. 78 elements for the pedestrian scenario and
300 records), the tree overfits to the data – curse of dimensionality–
as confirmed by the low importance scores. Hence, only rules with
high accuracy should be extracted from the branches, accounting
for their frequency, and only the first levels of the tree should be
used to extract individual concepts when few data are available.

5.4 Discussion
Results show that SECA correctly identifies different types of biases
in model behavior –biases of visual entities, those arising from
skewed data distribution and those from model architecture– and
that it generates a rich set of interpretations for exploratory analysis
of model behavior. Compared to ACE, SECA identifies a larger and
more diverse set of concepts that are useful to identify more (biased)
behavior patterns of a model. In particular, SECA identifies concepts
with entity types and those comprising multiple sub-concepts that
are often missed by ACE. We also observe that the different analysis
tools of SECA allow to uncover various model behaviors.

A clear experimental limitation is the lack of an exact ground
truth for what a model learns, making it challenging to conduct a
full evaluation (especially in terms of interpretation completeness).
We cope with this issue by setting up controlled experiments with
manually induced biases of various types, which allow to evaluate
interpretation effectiveness and informativeness from the bias angle.
Another area of improvement concerns the amount and diversity
of learning tasks and datasets. However, we stress that to date ours
is one of the most comprehensive interpretability evaluation effort.

6 COST PERFORMANCE TRADE-OFF
In this section, we investigate Q3: how do the main parameters that
configure SECA impact the trade-offs between cost, correctness, and
informativeness of the interpretations?

6.1 Experimental set-up
6.1.1 Evaluation process. We study the impact that number of an-
notated images, annotation granularity, and the type of annotators
(i.e., crowd-workers vs. trained annotators) have on the correctness
and informativeness of the explanations generated by SECA. We use
the same tasks as in the previous section.
Number of annotated images. As a reference, we use SECA to create
interpretations based on a high number of annotated images (400).
As we have shown in the previous section, SECA can generate satis-
factory quality interpretations, i.e. interpretations that match the
reference ones. We incrementally create interpretations from lower
numbers of annotated images (between 20 and 400, in increments
of 10). Finally, we compute the precision and recall of the concepts

and the mean absolute error of Cramer’s values, comparing the
interpretations using smaller labeled image sets to the reference
with 400 labeled images.

We hypothesize that the complexity of a learning task, which
depends on a dataset characteristics, impacts the number of images
needed to obtain similar correctness. The more classes to learn
(need to uncover behaviors for more classes), the more diverse the
visual entities and attributes per class (forces the model to use more
concepts for classification), and the more concepts co-occur across
classes (a model might rely on complex combinations of concepts),
the more images should be needed to uncover a model’s behavior.
We investigate this by comparing the metrics computed on biased
and unbiased scenarios (variation of intra-class semantic content
diversity), and across tasks (more classes and lower inter-class
concept co-occurrence in the fish task T2 than in T1 and T3).
Annotation granularity. We vary granularity from large to fine
grained for both entity types and the attributes, defining different
categories: for the entity type granularity category E1, all visual enti-
ties inherently part of the class (e.g. a blue star for the ambulance
class, an antenna for the lobster class) are annotated as the class
name, and all background objects are annotated as “background”.
In category E2, we distinguish the different parts of classes (e.g.
claw, antennas, legs, body, head for the lobster), and we catego-
rize background elements into large-grain categories (e.g. nature,
food). Finally, in category E3, we refine the background annota-
tions (e.g. rice, tomato, pavement) and the non-background ones
when finer-grain entities can be identified. For the attributes, the
category A1a combines color variations into seven main colors, and
textures into large categories; in category A1b colors are combined
depending on dark or light aspects. In category A2 no combination
is performed.We consider the reference granularity being the finest-
grain ones, i.e. E3 and A2 and compare the resulting interpretations
with coarser granularity categories.
Annotators.We compare the interpretations originating from saliency
maps annotated by trained annotators (the authors) with saliency
maps annotated by crowd workers, also computing the precision,
recall, and mean absolute error.

6.1.2 Evaluation details. Experiments on number of annotated im-
ages. For the three learning tasks, we annotate 800 images, sample
400 images to form the reference interpretations, and sets of k im-
ages among the 400 remaining ones to form the interpretations
to compare. We repeat this process 10 times to obtain statistically
significant measures. We hypothesize that the precision and recall
will be low for concepts with low Cramer’s value. To verify this, we
divide the reference concepts into 5 batches with Cramer’s values
equally divided between 0 and 1 (i.e., between 0 and 0.2, 0.2 and
0.4, etc.), and compute the recall per batch with all the concepts to
compare with. We cannot do this for the precision as we cannot
directly compare the reference batches to comparison concepts –
small errors in Cramer’s values would make the measures wrong
(e.g. a comparison concept of Cramer’s value 0.61 would lower
precision if its reference concept is in the batch 0.4 − 0.6). Instead,
we simply count the number of wrongly retrieved concepts in the
comparison set. We also compute the mean absolute error per batch
as we hypothesize that low Cramer’s value concepts are attributed
less accurate values due to the sampling error.
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Experiments on annotators. In this experiment, we compare annota-
tions of trained annotators to untrained crowd workers recruited
on crowdsourcing platforms, focusing on general annotation prop-
erties (like amount of bounding boxes, coverage of the salient areas,
amount of time spent, feedback questionnaires, etc.), and we inves-
tigate how the provided concepts compare semantically. For this
semantic comparison, we automatically map concepts provided by
crowdworkers to those provided by the trained annotators by com-
puting a similarity score between the concepts word embeddings,
fixing a threshold 𝑇 and retaining as matching only the concepts
with similarity above𝑇 . We repeat this with the different annotation
granularities. Assuming that the authors’ annotations are indeed of
high quality, we can now investigate the precision and recall of the
crowd compared to the authors. Furthermore, we investigate the ef-
fect of annotation reconciliation (step C3 of our approach) which is
necessary when multiple crowdworkers provide annotations with
varying vocabulary.
Crowdsourcing component implementation.We deployed the anno-
tation task on Amazon Mechanical Turk. Each HIT was composed
of a set of ten images and their saliency maps, and was assigned
to three crowd workers7. The instructions encourage the workers
to search for domain knowledge to give precise annotations as a
pilot study showed diverse annotation precision. 𝑘 = 125 clusters
are used for the reconciliation component as it provides the best
Silhouette scores.

6.2 Results: number of images
Figure 4 shows an example of the curves obtained for the fish task
BM1.1 (results for other datasets are similar, and reported in the
companion page). We observe that 300 annotations provide satis-
factory concept sets and Cramer’s values, and only 200 annotations
are needed if we do not need to identify less significant concepts.
We do not observe significant differences across tasks and biases.
Recall. For all the learning tasks, concepts are retrieved with only
200-300 annotations. Although the overall recall might not seem
satisfying even for 400 annotations, the recall for all concepts with
Cramer’s value greater than 0.2, closely approaches 1 (and 0 stan-
dard deviation) with 300 annotations, and a minimum of 0.9 recall
is observed with 200 annotations. Concepts of Cramer’s value be-
tween 0.4 and 1 are even retrieved with just 100 annotations. Lower
Cramer’s values are indicative of less significant, possibly irrelevant
concepts (see subsubsection 5.2.1), picked up by a model in lower
frequencies, thus they are more susceptible to sampling noise, and
need more images to be retrieved.

Recall curves are similar across tasks. For instance, BM1.2 also
needs 300 images but with a standard deviation lower than BM1.1,
probably because of its lower intra-class complexity. D5.1 (pedes-
trian) just requires 20 more images to approximate a recall of 1
with a standard deviation lower than 0.02 –probably due to more
inter-class co-occurrences than BM1.1. Generally, this is because
the impacts of the data characteristics balance each other, e.g. al-
though there are more classes in T2 (fish), the image content in T3
(vehicle) or T1 (pedestrian) is more diverse.

7We included workers from UK and USA with at least 5K approved hits, and a HIT
approval rate greater than 85%.

Table 5: SECA interpretations on the fish bias task for various
Granularity of entity types. Granularity E3 is in Table 4.

Gra. Interpretations (Cramer’s value)

E1 lobster(.95), tench(.92), shark(.83), back AND lobster(.89), tench
AND back(.88), orange(.81), grey-tench(.83), orange-lobster(.79),
green-back(.78), light grey-back(.74)

E2 tench_body(.89), lobster_claw(.85), lobster_body(.73),
orange-lobster_claw(.72), blue-water(.75), water(.7), beige-
human_body_part(.63), food(.46), table_tool, clothe(.4)

Precision. The precision is also satisfying with only 200 images. The
precision curve decreases from 1 with 10 images to 0.93 with 200
images and 0.9 with 300 images, the standard deviation remains
constant at 0.04. A closer look at Figure 4b shows that, once more,
most incorrect concepts have Cramer’s values inferior to 0.2 when
increasing the number of images since such concepts are more
subject to sampling noise. Not accounting for these concepts allows
to keep a precision higher than 0.9 for every number of images.

The curves are similar across tasks, with T1 and T2 having a
larger standard deviation around 0.1 and 0.07 respectively, verifying
our hypotheses. Only tasks with many more classes and higher
visual entity intra-class diversity or inter-class co-occurence would
probably require to annotate more images.
Mean absolute error. The approximation of Cramer’s values is accu-
rate even for less than 200 annotations (again except for concepts
of Cramer’s values below 0.2). The error decreases rapidly with
more images, going from 0.2 with 0.1 standard deviation for 20 an-
notations, to 0.026 and 0.001 standard deviation for 300 images and
above. This is because having more annotations allows to approach
the real joint distribution of concepts and classes in the data, on
which the Cramer’s values are computed.

6.3 Results: granularity of the annotations
Entity types. We report the results on BM1.2 in Table 5 (results
from other tasks point to similar conclusions, and are reported
in the companion page). With large grain annotations (E1 and
A1a), the retrieved concepts are correct but poorly informative as
actionable insights. E.g., lobster, tench and shark are the most
salient concepts, followed by color concepts, combinations of the
background concept and one of the previous fish-related concepts,
or pairs of color and fish concepts (e.g. orange-lobster). This
interestingly indicates that the model uses both concepts related to
the classes and background concepts, but without more details we
can neither conclude about the validity of this behavior – certain
background concepts could make sense, e.g. shark in the water,
nor identify visual background entities to redistribute in order to
remedy to the potential background bias.

Finer grain annotations bring more precise debugging informa-
tion. For instance, E2 uncovers the different parts of the concept
classes (e.g. lobster claw) possibly in combinations with col-
ors (e.g. orange-lobster claw), and the background entities (e.g.
blue-water, beige-human body part) used by the model and
based on which a dataset can be transformed to mitigate biases.
Further detailing background concepts E3 provides even more de-
tailed information, e.g. the face is the human body part the most
associated with the tench, the shirt is the most associated cloth.
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Figure 4: Analysis of the number of image annotations required by SECA for the ImageNet Fish task. The values in brackets
correspond to the Cramer’s values of the reference concepts used to compute the corresponding curves.

Hence, depending on the interpretation need, the granularity of
annotations needed differs. The medium granularity is enough to
explore the general functioning and validity of a model, while the
finest-granularity provides precise information to mitigate behavior
biases. If the finest granularity is employed, we recommend to
obtain a higher level overview of the model’s behavior by querying
combinations of concepts with an OR logic connection –equivalent
to aggregating concepts into larger grain ones. For instance, the
medium granularity uncovers shark-related concepts with Cramer’s
values around 0.65 or lower, while aggregated altogether the value
increases to 0.83, above the background concepts (0.74), showing
the potential correctness of the model’s behavior.

Entity attributes. The granularity of attributes on the contrary do
not lead to differences that impact the interpretations of the models.
This is probably due to the limited range of distinct colors that a
human is able to annotate easily. Automatic annotation methods
using pixel values might bring additional insights on the color
shades that are the most important for classification.

6.4 Results: Crowd vs. Trained Annotators
6.4.1 Components’ quality. 1) Annotations. Crowd workers took
𝜇 = 28𝑚,𝜎 = 11 minutes to execute the task. Quality of annotation
was good. Most workers who took less than 15 minutes provided
1-2 annotations of simple salient areas per images, while the ones
who took more time provide 2.8 annotations per image in average,
with a maximum of 66 per HIT. The difficulty of identifying salient
areas, drawing bounding boxes and annotating entity types and
attributes was evaluated with an average of 3.3, 3.1, 3.1 and 3.3
respectively on a scale of 1 (easy) to 5 (difficult). Few annotators
provide full coverage of the salient areas, either due to not iden-
tifying certain entities, or due to not drawing boxes around the
entire areas. This has limited impact on interpretation quality, as
having precise bounding boxes is not important, and using multiple
annotators proved to provide the needed coverage.

2) Annotation Reconciliation. The clustering approach used to de-
termine reconciled annotations is satisfactory: most clusters are
relevant for the interpretation task. They reconcile wording differ-
ences (e.g. tooth and teeth), synonyms and terms that designate
similar concepts (e.g. belly, stomach). Mistakes are introduced by
words with multiple meanings, e.g. lobster antenna is grouped with
network infrastructure words, because no context is used to create
the embeddings. Some terms that relate to different granularities

are grouped (e.g. hand, fingers and thumb), which might impact
the interpretations when the finest granularity is needed.

6.4.2 Correctness of the interpretations. We report here the results
for the fish bias task. The interpretations from the crowd uncover
the main expected biases, e.g. presence of water for the shark
images, grass, trees and human body parts around the tench
images, plates for the lobster images, and only a few concepts do
not appear, e.g. certain food concepts such as corn for the lobster.

However, we obtain only 0.48 precision, 0.61 recall and 0.18
mean absolute errors of Cramer’s value on significant concepts
retrieved for the finest granularity. The medium and large granu-
larity respectively reach a precision of 0.53, 0.57, a recall of 0.70,
1.0 and a mean absolute error of 0.19, 0.40. Only a few concepts are
not mentioned by the crowd (e.g. lemon), probably because they
appear small in the background of the images, behind the main
objects. As hinted by these increasing values, this contradiction is
mainly due to measurement errors: differences in the vocabulary
and granularity of annotations cause errors in the mapping used
in the evaluation process, which makes precision and recall low.
Most reference concepts that appear as missing from the crowd
interpretations are actually retrieved. For instance, the concepts
from the trained annotators shellfish and sauce are annotated
by the crowd with oyster, shrimp and soup, liquid. The crowd
annotations are often more fine-grained, which also lowers the
precision. For instance, heads annotated with boy head, man head,
woman head and some with human head instead of solely the latter
like the trained annotators’, formed two distinct clusters (human
associated with animal and the others together), one appearing
irrelevant. The average mean absolute error increases with larger
granularity because we modify only the granularity of the trained
annotators’ concepts, while the worker’s concepts remain distinct
with lower Cramer’s values. Overall, employing the crowd with
simple post-processing methods provides interpretations of similar
correctness, with only few fine-grain concepts missing.

6.4.3 Informativeness of the interpretations. Certain interpretations
obtained from the crowd are richer in terms of granularity than
those from the trained annotators. For instance, the crowd inter-
pretations differentiate between the shark fins, e.g. caudal fin,
dorsal fin, whereas only fin appears in the trained annotators’
concepts. This is because certain workers provide precise vocab-
ulary (as encouraged in the instructions) that a trained annotator
might not have thought of (e.g. pectoral, caudal, dorsal fins,
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etc.), or for which a trained annotator does not have domain knowl-
edge like the species of fish labeled by the crowd (e.g. muskellunge,
carp, tench). This is the main advantage of using the crowd in-
stead of trained annotators. Having multiple, lower cost, annotators
allows to mitigate individual bias, as different persons focus on dif-
ferent entities, granularity and labels.

6.5 Discussion
SECA can produce correct and informative interpretations already
with few images annotated (300) using crowd workers.

Significant concepts are well covered with even fewer images
(100, Cramer’s value above 0.4), with satisfactory performance.
While finest-grain concepts are useful to understand precise model
behavior and debug it, medium-grain concepts seem to be satisfy-
ing for model validation and general exploration purposes. Crowd
annotations generally align with those from trained annotators,
but with a richer vocabulary that allows to gain comprehensive
understanding of model behavior. While workers’ contributions
are not always accurate, we stress the simplicity of our task de-
sign. Experiments show that crowd workers can be systematically
employed to support saliency map annotations, thus enabling an
accurate, scalable, and relatively cheap post-hoc interpretability
method. We acknowledge though, that our experiment is limited
to binary/three classes problems. Experiments on tasks with more
classes can help quantify the impact of the class number and diver-
sity on cost effectiveness trade-off.

7 CONCLUSION
We presented SECA, a framework to support post-hoc, interactive
interpretation of machine learning models for image classification.
SECA offers interpretations based on easily understandable seman-
tic concepts (entities and attributes). These concepts are obtained
via crowd-sourcing from local interpretatability saliency maps, and
then reconciled and consolidated into a unified and structured rep-
resentation which allows the use of different statistical mining
techniques to discover or query for concepts relevant for a model’s
decision making. Extensive experiments showed that, compared
to related work, SECA can discover more informative and complete
concepts, and that these concepts are more interpretable and action-
able to debug a model. Results show that using crowd workers to
provide semantics to annotate salient image areas provides results
with sufficient performance at lower costs, and that also smaller
sample of annotated images lead to actionable results. As future
work, we plan to investigate the mitigation of the spurious biases
identified by our framework.
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