

FedTrans: Client-Transparent Utility Estimation for Robust Federated Learning

Project

Mingkun Yang*, Ran Zhu*, Qing Wang, Jie Yang

MOTIVATION

Client Utility The **quality of local labels/data** has significant impacts on the performance of global model. We define such impacts as client utility.

Client-Transparent Estimation

Ideally, inference of client utility should be

- ◆ Transparent: no additional client-side operations;
- ◆ Indicative: inversely proportional to the actual noise level.

FedTrans allows to:

- maintain the same level of privacy guarantee as other SOTA frameworks;
- guide client selection for global model aggregation by selecting clients with optimal utilities.

METHOD

Bayesian Inference

We proposed a unified **Bayesian framework** and apply a **Variational Inference** algorithm to update the parameters.

Discriminator

$$s_i \sim Ber(\theta_i) = Ber(f^{w_d}(x_i))$$

Round Informativeness

$$r_j \sim Beta(\alpha_j, \beta_j)$$

Round-Reputation Matrix

$$p(\mathbf{R}_{i,j}|s_j,r_j) = r_j^{\mathbb{1}(s_j = \mathbf{R}_{i,j})} + (1 - r_j)^{\mathbb{1}(s_j \neq \mathbf{R}_{i,j})}$$

EVALUATION

We construct the local noise in both **label** and **feature** space.

Random Flipping Pair Flipping Open-set Noise

Setup CIFAR10 in Dirichlet distribution with 30% noisy clients; auxiliary dataset contains **200 samples** randomly selected from test set.

	Hybrid (intra-)	Label (intra-)	Image (intra-)
FedAvg (McMahan et al., 2017)	$68.3\% \pm 0.6\%$	$66.4\% \pm 0.3\%$	$69.2\% \pm 2.4\%$
FLDebugger (Li et al., 2021)	$64.3\% \pm 0.3\%$	$61.2\% \pm 0.4\%$	$66.1\% \pm 0.5\%$
Oort (Lai et al., 2021)	$56.2\% \pm 0.3\%$	$56.8\% \pm 0.8\%$	$65.8\% \pm 0.0\%$
Robust-FL (Yang et al., 2022b)	$70.6\% \pm 0.8\%$	$73.4\% \pm 0.4\%$	$70.8\% \pm 0.1\%$
RHFL (Fang & Ye, 2022)	$70.1\% \pm 0.1\%$	$68.8\% \pm 0.4\%$	$73.0\% \pm 0.1\%$
DivFL (Balakrishnan et al., 2022)	$70.1\% \pm 1.0\%$	$70.7\% \pm 0.3\%$	$72.7\% \pm 0.6\%$
FedCorr (Xu et al., 2022)	$73.7\% \pm 0.4\%$	$\textbf{75.7\%}\pm\textbf{0.1\%}$	$73.7\% \pm 0.6\%$
Fine-tuned DivFL	$70.6\% \pm 0.4\%$	$68.7\% \pm 0.2\%$	$70.0\% \pm 0.4\%$
Fine-tuned FedCorr	$68.2\% \pm 0.2\%$	$69.2\% \pm 0.3\%$	$67.0\% \pm 0.2\%$
FedTrans	$76.9\% \pm 0.3\%$	$75.7\% \pm 0.4\%$	77.0% \pm 0.2%

- ◆ Top-1 accuracy: global model of FedTrans consistently outperforms other baselines in all noise settings.
- ◆ Auxiliary data efficiency: FedTrans exploits it in a more efficient way than simply fine-tuning the global model.

Overheads

The overall optimization time **significantly decreases** as FL proceeds with diminishing discriminator iterations.