

Recommender Systems and Beyond in Web Information Systems

Jie Yang, Alessandro Bozzon, Geert-Jan Houben j.yang-3@tudelft.nl

What do we do?

Social Web Data Science

Example 1: modeling user expertise, engagement, and topical diversity for question recommendation in community Q&A systems.

Example 2: modeling user cultural background, and city gene for POI recommendation in socio-spatial data analytics systems.

Topics:

- User Modeling
- Crowdsourcing
- Urban Analytics
- Recommendation

Resident
Tourist

Airport

Knowledge Crowdsourcing
Acceleration

What do we contribute?

Systems - Social G

- Social Glass
- E-WISE

 $G_3 = |\{u_4, u_5\}|$

 $G_5 = \{u_1, u_2, u_3, u_4, u_5\}$

 $G_2 = |\{u_3\}$

 $G_4 = [\{u_1, u_2, u_3\}]$

 $G_1 = \{u_1, u_2\}$

Methods and Tools

user model based recommendation

- Matrix and tensor factorisation
- Learning to rank
- LibMTF

$\frac{\partial \mathcal{J}}{\partial \mathbf{U}} = ((\mathbf{O} \odot \mathbf{U} \mathbf{V}^T) \mathbf{V} - (\mathbf{O} \odot \mathbf{R}) \mathbf{V} + \alpha \mathcal{L} \mathbf{U}$	$+\lambda \mathbf{U}),$
$\frac{\partial \mathcal{J}}{\partial \mathbf{V}} = ((\mathbf{O}^T \odot \mathbf{V} \mathbf{U}^T) \mathbf{U} - (\mathbf{O}^T \odot \mathbf{R}^T) \mathbf{U} + \lambda$	$(\mathbf{V}).$

$$\frac{\partial \mathcal{J}}{\partial g_p} = \prod_{\forall a: G_a \in ancestors(G_p)} s_a Dis(G_p),$$

$$\partial \mathcal{J}$$

$$\frac{\partial \mathcal{J}}{\partial s_p} = \prod_{\forall a: G_a \in ancestors(G_p)} s_a(\sum_{\forall G_c \in children(G_p)} \mathbf{W}(G_c)).$$

Opportunities?

