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IN4325 Information Retrieval



• PhD researcher at Web Information Systems group 
• Working on social media         user modelling          knowledge 

crowdsourcing 
• crowdsourcing: the process of sourcing tasks to large online crowds, 

soliciting human contributions to obtain results 
• knowledge crowdsourcing: the process of designing, executing 

and coordinating crowdsourcing tasks that are knowledge intensive 
• user modelling as a integral part of knowledge crowdsourcing to 

profile crowd’s knowledge-related properties 
• social media (e.g. social Q&A system like Stack Overflow) as a 

source of large-scale crowd 
• PhD topic: knowledge crowdsourcing acceleration. 

Self-introduction

7



Accelerating Knowledge Creation in Collaborative 
Q&A Systems

8



• Collaborative QA (CQA)  

• Expertise Recognition 

• Question Routing 

• Question Editing

Accelerating Knowledge Creation in Collaborative 
Q&A Systems

8



• Collaborative QA (CQA)  

• Expertise Recognition 

• Question Routing 

• Question Editing

Outline

9



CQA systems are everywhere
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Rich user interfaces 

Effective incentives 

Fast knowledge 
generation & exchange 



Question

Highly active (Sept. 2013):  
  5.6M questions 
10.3M answers  
22.0M comments    

Effective gamification: 
users earn reputation points 
if their posts are up-voted
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Answers

Stack Overflow: a CQA system for programmers

CommentsVotes
Q&A: a Special Type of Knowledge Crowdsourcing
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Stack Overflow as a knowledge repository

     From the perspective of A. Web Information System, B. Software 
Engineering

A. Crowd-
generated 

Knowledge 
Repository

B. in Software 
Engineering

Main research topics: 

	 - accelerating the process of knowledge creation 

	 - mining knowledge repository



• 2M questions (36%) do not have any up-voted answer  

• Median time until an accepted answer is posted: ~30 minutes, 
average time: ~3 days (i.e. some questions require a long waiting 
time) 

• Remedies to decrease the time to an answer: 
• Route questions to the “right” user 
• Improve the question itself

Stack Overflow challenges & solutions
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Topics to be discussed
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• Existing Metrics 
• #answers 
• reputation (mostly got from voting's for answers) 
• Zscore (#answers-#questions)

Activeness = Expertise?
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All biased to user activeness

Question: C# to C++ ‘Gotchas’
Rank 1 C++ has so many gotchas… 2 answers
Rank 2 Garbage Collections! 26 answers
Rank 3 There are a lot of differences 175 answers

… …
Rank 14 The following isn’t meant… 24 answers

According to #votes Activeness of an answerer

Best answer is provided by an inactive user



• Global: 5.6M questions, 10.3M answers, 2.3M users 
• Topic C# related 

• 472K questions, 1M answers, 117K answerers 
• #answers per question： 2.27±1.74 
• #answers per user: 9.15±76.66. (Power Law)

Dataset and data visualisation

19



• Answer Utility

• 1/(rank position) of an answer 
• measure the usefulness of answer to a question 

• Question Debatableness 
• #answers to a question 
• consider “difficulty” of the question

Expertise metric:  
mean expertise contribution (MEC)
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Answer Utility = 1/2
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Question: C# to C++ ‘Gotchas’

Rank 1 C++ has so many gotchas… 2 answers

Rank 2 Garbage Collections! 26 answers

Rank 3 There are a lot of differences 175 answers

… …

Rank 14 The following isn’t meant… 24 answers

Debatableness = 14



Mean expertise contribution
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Answer Utility * Debatableness = 7
Question: C# to C++ ‘Gotchas’

Rank 1 C++ has so many gotchas… 2 answers

Rank 2 Garbage Collections! 26 answers

Rank 3 There are a lot of differences 175 answers

… …

Rank 14 The following isn’t meant… 24 answers



• Implementation in http://data.stackexchange.com 
• Link: http://data.stackexchange.com/stackoverflow/query/219875/

mec-revised?tag=c%23

Demo

24
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RQ1. How do CONTRIBUTIONS from Sparrows and Owls differ? 

RQ2. Do Sparrows and Owls show different PREFERENCES in      
knowledge creation? 

RQ3. Are INCENTIVISING mechanism equally effective on 
sparrows and owls?

How do owls and sparrows behave 
(differently)?
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RQ1. How do CONTRIBUTIONS from Sparrows and Owls 
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Sparrows answer much more, and more 
selective in answering less debatable questions.



Answering quality

29

Owls
Sparrows

A
ns

w
er

in
g 

Q
ua

lit
y

0.6

0.8

1.0

Question Debatableness
10 20 30



Answering quality

29

Owls
Sparrows

A
ns

w
er

in
g 

Q
ua

lit
y

0.6

0.8

1.0

Question Debatableness
10 20 30

Owls give better answers than Sparrows for 
questions of all different debatableness.



RQ2. Do Sparrows and Owls  
show different PREFERENCES in knowledge creation?



Popularity = #views 
Difficulty = Time to Solution = Taccept -  Tpost

Questions they answer to
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RQ3. Are incentivising mechanisms equally effective on 
sparrows and owls?
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Answers post by each group

33

Reg. in 2012
Reg. in 2011
Reg. in 2010

Reg. in 2009
Reg. in 2008

# 
Sp

ar
ro

w
s

0
1
2
3
4
5
6
7

8×105

Answers posted in Year
2008 2009 2010 2011 2012

Reg. in 2012
Reg. in 2011
Reg. in 2010

Reg. in 2009
Reg. in 2008

# 
O

w
ls

0

1

2×105

Answers posted in Year
2008 2009 2010 2011 2012



NOTE: Comparable #registrations

Answers post by each group

33

Reg. in 2012
Reg. in 2011
Reg. in 2010

Reg. in 2009
Reg. in 2008

# 
Sp

ar
ro

w
s

0
1
2
3
4
5
6
7

8×105

Answers posted in Year
2008 2009 2010 2011 2012

Reg. in 2012
Reg. in 2011
Reg. in 2010

Reg. in 2009
Reg. in 2008

# 
O

w
ls

0

1

2×105

Answers posted in Year
2008 2009 2010 2011 2012

Newly registered sparrows contribute much 
more than newly registered owls



NOTE: Comparable #registrations

Answers post by each group

34

Reg. in 2012
Reg. in 2011
Reg. in 2010

Reg. in 2009
Reg. in 2008

# 
Sp

ar
ro

w
s

0
1
2
3
4
5
6
7

8×105

Answers posted in Year
2008 2009 2010 2011 2012

Reg. in 2012
Reg. in 2011
Reg. in 2010

Reg. in 2009
Reg. in 2008

# 
O

w
ls

0

1

2×105

Answers posted in Year
2008 2009 2010 2011 2012



NOTE: Comparable #registrations

Answers post by each group

34

Reg. in 2012
Reg. in 2011
Reg. in 2010

Reg. in 2009
Reg. in 2008

# 
Sp

ar
ro

w
s

0
1
2
3
4
5
6
7

8×105

Answers posted in Year
2008 2009 2010 2011 2012

Reg. in 2012
Reg. in 2011
Reg. in 2010

Reg. in 2009
Reg. in 2008

# 
O

w
ls

0

1

2×105

Answers posted in Year
2008 2009 2010 2011 2012

Activities of owls decrease much faster than that 
of sparrows



NOTE: Comparable #registrations

Answers post by each group

34

Reg. in 2012
Reg. in 2011
Reg. in 2010

Reg. in 2009
Reg. in 2008

# 
Sp

ar
ro

w
s

0
1
2
3
4
5
6
7

8×105

Answers posted in Year
2008 2009 2010 2011 2012

Reg. in 2012
Reg. in 2011
Reg. in 2010

Reg. in 2009
Reg. in 2008

# 
O

w
ls

0

1

2×105

Answers posted in Year
2008 2009 2010 2011 2012

Activities of owls decrease much faster than that 
of sparrows
Gamification incentives can more effectively 
retain Sparrows than Owls



Insights

Q&A systems are important, 
modelling their users can be useful.

Expertise might be there, but we 
need a right way to find it. 

We provide an expertise metric, 
which can be a good start!



Insights

Q&A systems are important, 
modelling their users can be useful.

Expertise might be there, but we 
need a right way to find it. 

We provide an expertise metric, 
which can be a good start!



• Collaborative QA (CQA)  

• Expertise Recognition 

• Question Routing 

• Question Editing

Outline

36

Asker

Question

Expert Finding 

Suggested AnswererQuestion Routing 



• Question Routing systems aim at routing questions to users that are 
suited to answer them. 

• Usually formulated as a recommendation problem 
	 given a question, recommend potential answerers for it

General Introduction

37

Question



• Q1: can we always route questions to engaged users (engaged in 
answering to questions)? 

• Q2: can we always route questions to experts? 

Engagement vs. Expertise
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• Q1: can we always route questions to engaged users (engaged in 
answering to questions)? 

• Q2: can we always route questions to experts? 

• Question routing accuracy is important!

Engagement vs. Expertise

39

Expertise might be useful to be considered in question routing; 
however, it is scarce resource.  
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Three stage QR process: modelling
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Question and user modelling

42

• Activity-based and content-based model 
• For content-based model, we adopt vector space model (VSM) 



• Text processing 

• VSM 
• TF-IDF 

Text processing for vector space model 
representation

43
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Three stage QR process: matching
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Three stage QR process: ranking
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• Rerank the recommended users after matching  

• Options for expertise     measurement 
• MEC 
• Score 

• Learn      from historical data. 

Ranking

48
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• To understand how QR performance is influenced by data intensity, we 
partition a six-month dataset into N equal-sized partitions. 

• Datasets of different intensity levels are represented by k/N, which includes 
users active in k out of N partitions. 

• A user must be active both in the first half [0,N/2] of the dataset and in the 
second half [N/2+1,N], such that the recommendation is possible. This 
requires that k>N/2. 

• An example of 4/6 intensity: 

Data Intensity 

49



Reranking results
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Expertise can helps, especially MEC.
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Reranking results
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With expertise measured by MEC, content-based 
QR outperform the best activity based QR.
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Conclusions

Expertise helps in question 
routing.

User interest is important in user 
modelling for question routing. 

Data intensity can largely affect 
question routing performance.
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40% of the questions are edited at least once.

Edit Suggestion 

Asker

Question



Question edit example
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Question edit example
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An editing opportunity could indicate a lack of 
quality for a question



Qualitative study to identify edit categories

• 600 questions with “important” edits, 3 annotators  

• A question edit is important if 
• the question did not receive a good answer after the initial 

post 
• after the edit the question receives at least one more 

answer 
• the edit is not just related to spelling and formatting 

• Result: 7 edit categories were identified that substantially 
change the content of a question
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Categories of important edits

Edit category Added example text (excerpt)

1. Attempt
Update 1: I’ve tested the application with NHProf 

without much added value: NHProf shows that the 
executed SQL is ...

2. Source code 
refinement

Here is the code:

import android.content.Context;
import android.graphics.Matrix;
...
3. Hardware/Software 

details
I’m running OS 10.6.8


4. Context EDIT: I have ’jquery-1.8.3.min.js’ included 
first, then I have the line $.noConflict();. …
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Edit category Added example text (excerpt)

5. Problem 
Statement

The Error:

Exception in thread "AWT-EventQueue-0" 
com.google.gson.JsonParseException: The 

6. Example
I have a list of numbers like this in PHP array, and I 

just want to make this list a little bit smaller. 

2000: 3 6 7 11 15 17 25 36 42 43 45...

7. Solution **EDIT 2: **Okay that’s done the trick. Using @Dervall 
’s advice I replaced the MessageBox line with a 

hidden window like this:
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Edit category Added example text (excerpt)

5. Problem 
Statement

The Error:

Exception in thread "AWT-EventQueue-0" 
com.google.gson.JsonParseException: The 

6. Example
I have a list of numbers like this in PHP array, and I 

just want to make this list a little bit smaller. 

2000: 3 6 7 11 15 17 25 36 42 43 45...

7. Solution **EDIT 2: **Okay that’s done the trick. Using @Dervall 
’s advice I replaced the MessageBox line with a 

hidden window like this:
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Edits are a good indicator of a question’s quality.  
Edits indicate which aspects are missing in a question.

Categories of important edits



Two tasks to aid question reformulation
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Edit prediction  
predict whether a question needs an edit.
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Edit prediction  
predict whether a question needs an edit.

Edit type prediction  
predict what kind of edit the question requires.



Two tasks to aid question reformulation
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Edit prediction  
predict whether a question needs an edit.

Edit type prediction  
predict what kind of edit the question requires.



One data set, three partitions

• Stack Overflow data set: edited and non-edited questions 

• Three partitions: extreme, confident and ambiguous 

• Expectation: ambiguous partition is most difficult to predict 
correctly
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Training vs. test data: a temporal split

Classifier: logistic regression 

Features: terms (after text preprocessing)

#question 
overall

#edited 
questions

#non-editted 
questions

Training: Extreme 36.0K  18.0K 18.0K

Test: Extreme 15.0K   7.5K  7.5K

Test: Confident 85.0K  42.5K 42.5K

Test: Ambiguous  1.8M 523.0K 1.2M

before 01/2013

61

01/2013 onwards



Edit prediction results

Test partition Precision Recall F1

Extreme 0.63 0.78 0.70

Confident 0.58 0.69 0.63

Ambiguous 0.51 0.65 0.57
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Confident 0.58 0.69 0.63

Ambiguous 0.51 0.65 0.57

We can predict whether a question needs an edit.
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The questions most in need of an edit (Extreme) 
are identified accurately (high recall).



Discriminative features (terms)

Unigram Coef.

dbcontext 0.88

microsoft 0.57

com 0.55

socket 0.42

Unigram Coef.

mental -0.29

lexer -0.41

string -18.48

archiv -19.94
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Discriminative features (terms)

Unigram Coef.

dbcontext 0.88

microsoft 0.57

com 0.55

socket 0.42

Unigram Coef.

mental -0.29

lexer -0.41

string -18.48

archiv -19.94

A deeper understanding of a topic produces 
questions which require edits less often.
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Two tasks to aid question reformulation
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Edit prediction  
predict whether a question needs an edit.

Edit type prediction  
predict what kind of edit the question requires.



Constructing an edit type dataset

A binary classifier for each edit type (4 overall) 
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Edit category Added example text (excerpt)

Attempt
Update 1: I’ve tested the application with NHProf 

without much added value: NHProf shows that the 
executed SQL is ...

Source Code refinement
Here is the code:

import android.content.Context;
import android.graphics.Matrix;
...
Hardware/Software 

Details
I’m running OS 10.6.8


Problem statement, 
example, context

EDIT: I have ’jquery-1.8.3.min.js’ included 
first, then I have the line $.noConflict();. …
SEC



• 1,000 edited questions randomly selected from the 
Extreme partition 

• 3 annotators, labelling 400 questions each 
• A question can have more than one edit 
• Inter-annotator agreement:100 overlapping questions

Type Code Attempt SEC Details

Kappa 0.67 0.65 0.59 0.19

#questions 612 336 542 NA
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Constructing an edit type dataset

(Details type not considered in further experiments)



Augmenting the training data semi-automatically

• Positive: augment with edited questions where the term 
‘code’ (for questions of type Code) or ‘tried’ (for questions of type 
Attempt) was added in the edit step  
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Question edit example

68



Augmenting the training data semi-automatically

• Positive: augment with edited questions where the term 
‘code’ (for questions of type Code) or ‘tried’ (for questions of type 
Attempt) was added in the edit step  

• Negative: randomly select non-edited questions from the 
Extreme partition  

• Dimension reduction: latent semantic analysis 

• Evaluation: 5-fold cross-validation
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Edit type prediction results
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Edit type prediction results

70

We can predict what type of edit a question needs.



71

Going beyond the question content…



So far: edit & edit type prediction based on question 
content alone. 
Now: 
• Topic: to what extent does the topic influence the 

need for a question edit? 
• User: how does a user’s knowledge & familiarity with 

Stack Overflow influence the need for a question edit? 
• Time: over time, doe fewer or more questions require 

a substantial edit?
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Influences of topic, user and time



Topical influence

Rank Tag Ratio

1 asp.net-mvc-4 6.16

2 jsf 6.02

3 symfony2 5.57

4 r 4.34

Rank Tag Ratio

198 logging 0.44

199 testing 0.41

200 design 0.34

201 svn 0.27

Ratio = #(edited question)/#(non-edited questions)
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Topics about specific languages and 
frameworks are more prone to requiring edits.
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A user post less questions that need  
a substantial edit as time goes by.
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Users with more activities  
post questions with higher quality.

A user post less questions that need  
a substantial edit as time goes by.

Experienced Stack Overflow users, and users 
with in-depth knowledge of a topic, are less 
likely to post poorly formulated questions.



Temporal influence
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#edited questions − #non-edited questions User registration over time
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#edited questions − #non-edited questions User registration over time
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Over time, an individual user asks fewer 
questions on Stack Overflow.

Overall, the increasing popularity of the platform 
leads to more poorly formulated questions.



• Presented signals are discriminative in edit/non-edit 
classification 

• Adding them as features to our classifier does not lead to 
significant performance increases
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• Presented signals are discriminative in edit/non-edit 
classification 

• Adding them as features to our classifier does not lead to 
significant performance increases
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However …

Thus: content information is most indicative of 
a question’s need for an edit.



Conclusions

Question edits can be useful to 
improve question quality.

The need for a question edit can be 
predicted.

Predicting the edit type is also 
possible, but more difficult.
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